终于要开始写自己的第一篇博客啦,真有点小激动(手足无措 =。=!)。因为最近正在琢磨机器学习,第一篇博客就从学的第一个算法开始:k-nearest neighbors algorithm即k近邻算法。

**************************************正文分界线***************************************

wiki:在模式识别和机器学习领域,k近邻算法(k-nearest neighbors algorithm or k-NN for short)是应用于分类问题(classification )和回归问题(regression)的一种无参数方法。分类时,k-NN输出为所属分类(class membership);回归时,k-NN输出为属性值(property value)。

分类(classification),即识别出样本所属的类别。因为还没学到regression,所以只写classification(是只会好嘛,TAT)

首先,看一下数据的形式,比如下图“基于四种特征对鸟进行分类 ”

kNN算法

给定训练样本集(training set),我们知道其中每条数据的label(即所属类别,比如什么鸟)。关注两个key words:特征(feature)和目标变量(target variable),每条数据均看成“特征向量+目标变量”(比如[weight, wingspan, ..., ...]+species)的形式,在这里,数据的label即目标变量。当没有label的新数据“特征向量+?”到来时,我们将它和训练样本集中的每条数据进行比对,计算他们特征向量间的距离(相似程度的度量),挑选训练样本集中k个与之距离最近的数据,观察他们的label并计数,即进行“投票表决”,票数最高的label是新数据的label(分类,并不一定正确)。

General approach to kNN

  1. Collect data : Any method, such as a text file provided or a database.

  2. Prepare : Numeric values are needed for a distance calculation. A structured data format is best.

  3. Analyze : Any method, for example, using Matplotlib to make 2D plots of data.

  4. Train : Does not apply to the kNN algorithm. No explicit training step is required.

  5. Test : Calculate the error rate(=error number/dataset size) with a test set.

  6. Use: This application needs to get some input data and output structured numeric values. Next, the application runs the kNN algorithm on this input data and determines  which  class  the  input  data  should  belong  to.  The  application  then takes some action on the calculated class.

Pros: High accuracy, insensitive to outliers, no assumptions about data

Cons: Computationally expensive, requires a lot of memory

Works with: Numeric values, nominal values

以下几点需要注意

  1. 因为需要计算距离,所以特征应为数字型,比如weight和wingspan,像webbed feet这样的布尔型或者back color这样的字符串型的就不能使用;

  2. 因为特征的单位和数值范围(scale)不同,所以要对特征进行归一化,均压缩至0至1或-1至1

  3. 距离不一定是欧氏距离(Euclidean distance),也可以是其他定义(范数)

  4. 每次classify都要遍历整个样本集,当样本集很大和特征向量很长时,计算成本和内存成本“高昂”

代码实现要点

  1. 将数据组织成我们需要的形式(函数实现),特征向量以行的形式“堆砌”成矩阵(matrix或2d array),相应的目标变量排成一列形成向量(list)

  2. 使用python的dict数据结构用于“计票”很方便,以label为“键”(key),以票数为“值”(value),然后以value排序提取key即可

重要思想

  1. 将样本看成“特征向量+目标变量”的形式

  2. 数据结构的巧妙运用

参考

[1] Harrington, Peter. Machine learning in action. Manning Publications Co., 2012.

[2] http://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm#cite_note-1

Classifying with k-Nearest Neighbors(k近邻)的更多相关文章

  1. [机器学习系列] k-近邻算法(K–nearest neighbors)

    C++ with Machine Learning -K–nearest neighbors 我本想写C++与人工智能,但是转念一想,人工智能范围太大了,我根本介绍不完也没能力介绍完,所以还是取了他的 ...

  2. K Nearest Neighbor 算法

    文章出处:http://coolshell.cn/articles/8052.html K Nearest Neighbor算法又叫KNN算法,这个算法是机器学习里面一个比较经典的算法, 总体来说KN ...

  3. K NEAREST NEIGHBOR 算法(knn)

    K Nearest Neighbor算法又叫KNN算法,这个算法是机器学习里面一个比较经典的算法, 总体来说KNN算法是相对比较容易理解的算法.其中的K表示最接近自己的K个数据样本.KNN算法和K-M ...

  4. Approximate Nearest Neighbors.接近最近邻搜索

    (一):次优最近邻:http://en.wikipedia.org/wiki/Nearest_neighbor_search 有少量修改:如有疑问,请看链接原文.....1.Survey:Neares ...

  5. lintcode 中等题:k Sum ii k数和 II

    题目: k数和 II 给定n个不同的正整数,整数k(1<= k <= n)以及一个目标数字. 在这n个数里面找出K个数,使得这K个数的和等于目标数字,你需要找出所有满足要求的方案. 样例 ...

  6. 今天遇到的面试题for(j=0,i=0;j<6,i<10;j++,i++) { k=i+j; } k 值最后是多少?

    for(j=0,i=0;j<6,i<10;j++,i++) { k=i+j; } k 值最后是多少? <script type="text/javascript" ...

  7. 设子数组A[0:k]和A[k+1:N-1]已排好序(0≤K≤N-1)。试设计一个合并这2个子数组为排好序的数组A[0:N-1]的算法。

    设子数组A[0:k]和A[k+1:N-1]已排好序(0≤K≤N-1).试设计一个合并这2个子数组为排好序的数组A[0:N-1]的算法.要求算法在最坏情况下所用的计算时间为O(N),只用到O(1)的辅助 ...

  8. 有两个序列A和B,A=(a1,a2,...,ak),B=(b1,b2,...,bk),A和B都按升序排列。对于1<=i,j<=k,求k个最小的(ai+bj)。要求算法尽量高效。

    有两个序列A和B,A=(a1,a2,...,ak),B=(b1,b2,...,bk),A和B都按升序排列.对于1<=i,j<=k,求k个最小的(ai+bj).要求算法尽量高效. int * ...

  9. Python交互K线工具 K线核心功能+指标切换

    Python交互K线工具 K线核心功能+指标切换 aiqtt团队量化研究,用vn.py回测和研究策略.基于vnpy开源代码,刚开始接触pyqt,开发界面还是很痛苦,找了很多案例参考,但并不能完全满足我 ...

  10. 给定一个非负索引 k,其中 k ≤ 33,返回杨辉三角的第 k 行。

    从第0行开始,输出第k行,传的参数为第几行,所以在方法中先将所传参数加1,然后将最后一行加入集合中返回. 代码如下: public static List<Integer> generat ...

随机推荐

  1. Catalan 数列的性质及其应用(转载)

    转自:http://lanqi.org/skills/10939/ 卡特兰数 — 计数的映射方法的伟大胜利 发表于2015年11月8日由意琦行 卡特兰(Catalan)数来源于卡特兰解决凸$n+2$边 ...

  2. soapUI启动报错:The JVM could not be started. The maximum heap size (-Xmx) might be too large or an antivirus or firewall tool could block the execution.

    版本: soapUI-5.2.1 问题: 启动soapUI时报错:The JVM could not be started. The maximum heap size (-Xmx) might be ...

  3. ionic3+angular4开发混合app 之自定义组件

    这里主要是记录ionic3+angular4开发混合app时自定义组件,我想自定义组件的方法和angular4应该类似,具体在纯angular4中自定义组件,暂时没有实践,个人觉得差别不大,之后实践了 ...

  4. Centos7 编译安装 Nginx Mariadb Asp.net Core2 (实测 笔记 Centos 7.3 + Openssl 1.1.0h + Mariadb 10.3.7 + Nginx 1.14.0 + Asp.net. Core 2 )

    环境: 系统硬件:vmware vsphere (CPU:2*4核,内存2G,双网卡) 系统版本:CentOS-7-x86_64-Minimal-1611.iso 安装步骤: 1.准备 1.0 查看硬 ...

  5. javaEE学习路线与目标

    1.Java基础知识(15-30天) 2.了解html+css+js+jq+bootstrap(7天) 3.mysql+jdbc(重点)(3天) 4.xml(1天) 5.http协议+tomcat(1 ...

  6. Session Cookie介绍和使用

    Cookie机制 Cookie机制 Cookie是服务器存储在本地计算机上的小块文本,并随每个请求发送到同一服务器. IETF RFC 2965 HTTP状态管理机制是一种通用的cookie规范. W ...

  7. 小程序组件化框架 WePY 在性能调优上做出的探究

    作者:龚澄 导语 性能调优是一个亘古不变的话题,无论是在传统H5上还是小程序中.因为实现机制不同,可能导致传统H5中的某些优化方式在小程序上并不适用.因此必须另开辟蹊径找出适合小程序的调估方式. 本文 ...

  8. 【盛派周三分享-2019.2.20】开放分享内容,本期主题:《SCF、DDD及相关架构思想讨论》

    “周三分享”是盛派网络约定的每周三晚上定时举办的内部分享活动,活动主要由技术人员分享各方面的技术主题,并由所有参与者围绕主题进行讨论.除技术话题外,也可能涉及到相关的设计.财税.金融.政策等方面的延伸 ...

  9. Java中的线程协作之Condition

    一.Condition接口 1.Condition接口的常用方法介绍 /** * 已经获取到锁的线程调用该方法会进入等待状态,知道其他持有锁的线程通知(signal)等待队列中的线程或者被中断退出等待 ...

  10. 【RL-TCPnet网络教程】第18章 BSD Sockets基础知识

    第18章      BSD Sockets基础知识 本章节为大家讲解BSD Sockets,需要大家对BSD Sockets有个基础的认识,方便后面章节Socket实战操作. (本章的知识点主要整理自 ...