hdu4507 数位dp+推公式
推公式的能力需要锻炼。。
/*
dp的时候要存结构体
里面三个元素:
cnt,就是满足条件的个数
sum1,就是满足条件的数字和
sum2,满足条件的数字平方和
推导过程:还是用记忆化搜索模板
dp[pos][mod1][mod2]:后pos位模7=mod1,数位和模7=mod2的状态
设当前状态cur
枚举当前位i,碰到7跳过
求出后pos-1位的状态nxt
这里需要建立当前数的模型:
设x是后pos-1位的数:i*10^len+x;
cur.cnt+=nxt.cnt;
cur.sum1+=nxt.sum1+nxt.cnt*(i*10^(pos-1))
cur.sum2+=sum{ (i*10^len+x)^2 }= sum{ (i*10^len)^2 }+sum{ x^2 }+sum{ 2*x*i*10^len }
化简上式:sum{ x^2 }=nxt.sum2,
sum{ 2*x*i*10^len }=nxt.sum1*2*i*10^len
sum{ (i*10^len)^2 }=nxt.cnt*(i*10^len)
*/
#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define mod 1000000007
struct Node{
ll cnt,sum1,sum2;
Node(){cnt=-;sum1=sum2=;}
Node(ll cnt,ll sum1,ll sum2):cnt(cnt),sum1(sum1),sum2(sum2){}
}dp[][][];
ll a[],f[];
Node dfs(ll pos,ll mod1,ll mod2,ll lim){
if(pos<=) return mod1&&mod2?Node(,,):Node(,,);//% 7 ≠0 即可
if(!lim && dp[pos][mod1][mod2].cnt!=-)return dp[pos][mod1][mod2];
int num=lim?a[pos]:;
Node cur;cur.cnt=;
for(int i=;i<=num;i++){
if(i==)continue;
Node nxt=dfs(pos-,(mod1*+i)%,(mod2+i)%,lim&&i==num);
cur.cnt=(cur.cnt+nxt.cnt)%mod;
cur.sum1=((cur.sum1+nxt.sum1)%mod+nxt.cnt*(i*f[pos]%mod)%mod)%mod;
ll tmp1=nxt.sum1*%mod*i%mod*f[pos]%mod;
ll tmp2=nxt.cnt*(i*f[pos]%mod)%mod*(i*f[pos]%mod)%mod;
cur.sum2=((cur.sum2+nxt.sum2)%mod+(tmp1+tmp2%mod)%mod)%mod;
}
if(!lim)dp[pos][mod1][mod2]=cur;
return cur;
}
ll query(ll x){
int len=;
while(x){a[++len]=x%;x/=;}
return dfs(len,,,).sum2;
}
int main(){
f[]=;for(int i=;i<=;i++)f[i]=f[i-]*%mod;
ll A,B,t;cin>>t;
while(t--){
cin>>A>>B;
cout<<(query(B)-query(A-)+mod)%mod<<endl;
}
}
hdu4507 数位dp+推公式的更多相关文章
- sgu495:概率dp / 推公式
概率题..可以dp也可以推公式 抽象出来的题目大意: 有 n个小球,有放回的取m次 问 被取出来过的小球的个数的期望 dp维护两个状态 第 i 次取出的是 没有被取出来过的小球的 概率dp[i] 和 ...
- SGU 495 Kids and Prizes:期望dp / 概率dp / 推公式
题目链接:http://acm.sgu.ru/problem.php?contest=0&problem=495 题意: 有n个礼物盒,m个人. 最开始每个礼物盒中都有一个礼物. m个人依次随 ...
- Codeforces 288E - Polo the Penguin and Lucky Numbers(数位 dp+推式子)
题目传送门 似乎我的解法和官方题解不太一样 纪念自己独立做出来的一道难度 2800 的题. 我们记 \(ans(x)\) 为 \([444...44,x]\) 的答案,显然答案为 \(ans(r)-a ...
- HDU 4661 Message Passing ( 树DP + 推公式 )
参考了: http://www.cnblogs.com/zhsl/archive/2013/08/10/3250755.html http://blog.csdn.net/chaobaimingtia ...
- hdu4507(数位DP)
题目意思: 给定一个区间,求这段区间中,不含7,对7取余为0,各个位数相加之和对7取余为0的数的平方和. 设d[i][j][k][m]代表长度为i的,对7取余为j的,各个位数相加之和对7取余为k的数的 ...
- CCF 201312-4 有趣的数 (数位DP, 状压DP, 组合数学+暴力枚举, 推公式, 矩阵快速幂)
问题描述 我们把一个数称为有趣的,当且仅当: 1. 它的数字只包含0, 1, 2, 3,且这四个数字都出现过至少一次. 2. 所有的0都出现在所有的1之前,而所有的2都出现在所有的3之前. 3. 最高 ...
- HDU4507 吉哥系列故事——恨7不成妻 题解 数位DP
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4507 题目大意: 找到区间 \([L,R]\) 范围内所有满足如下条件的数的 平方和 : 不包含'7' ...
- HDU-4507 吉哥系列故事——恨7不成妻 数位DP
题意:给定区间[L, R]求区间内与7无关数的平方和.一个数当满足三个规则之一则认为与7有关:1.整数中某一位是7:2.整数的每一位加起来的和是7的整数倍:3.这个整数是7的整数倍: 分析:初看起来确 ...
- 递推、数位DP解析(以HDU 2089 和 HDU 3555 为例)
HDU 2089 不要62 题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=2089 Problem Description 杭州人称那些傻乎乎粘嗒嗒的人 ...
随机推荐
- JMeter二次开发(1)-eclipse环境配置及源码编译
1.下载src并解压 http://jmeter.apache.org/download_jmeter.cgi 2.获取所需jar包,编译 ant download_jars ant instal ...
- CSS3文字、背景与列表
一.文本相关属性 1.字体 (1)字体设置 在HTML中,字体通过<font face="字体名称">来设置.在CSS中字体通过font-family属性来控制,里面可 ...
- springdataJAP的更新与保存的方法是同一个
对于save方法的解释:如果执行此方法是对象中存在id属性,即为更新操作会先根据id查询,再更新 如果执行此方法中对象中不存在id属性,即为保存操作
- Vue——报错总结
[Vue warn]: Cannot find element: #app [报错原因] 1. 把对应js放在了head标签里面,页面没有加载完成就进行渲染,导致找不到#app. 2.加了<te ...
- shell 基础(一)
废话少说 往下看 1. 查看 Shell Shell 是一个程序,一般都是放在/bin或者/user/bin目录下,当前 Linux 系统可用的 Shell 都记录在/etc/shells文件中./e ...
- nginx安装访问
依赖包安装: 安装gcc gcc-c++: yum -y install gcc gcc-c++ autoconf automake 安装pcre: yum -y install pcre pcre- ...
- WS_TABSTOP 与 BS_DEFPUSHBUTTON 第一次使有
关于 WS_TABSTOP,我一直没搞明白,为何加了 WS_TABSTOP ,当按下 Tab 键时,窗口中的控件还是不能自动的切换焦点. 为何 SetFocus(hwnd); 后,虽然按钮已获得焦点, ...
- 我眼里K-Means算法
在我眼里一切都是那么简单,复杂的我也看不懂,最讨厌那些复杂的人际关系,唉,像孩子一样交流不好吗. 学习K-Means算法时,会让我想起三国志这个游戏,界面是一张中国地图,诸侯分立,各自为据.但是游戏开 ...
- (转)如何阅读OpenStack源码
1 关于该项目 本项目使用在线绘图工具web sequencediagrams完成,目标是图形化OpenStack的所有操作流程,通过操作序列图能快速学习Openstack的工作原理,理清各个组件的关 ...
- 腾讯云服务器tomcat端口无法访问
第一种情况: 如题:https://console.cloud.tencent.com/cvm/securitygroup 需要去这个地址设置安全组. 说实话,一句mmp不知当讲不当讲.使用说明这块太 ...