YY的GCD

给出T个询问,询问\(\sum_{i=1}^N\sum_{j=1}^M(gcd(i,j)\in prime)\),T = 10000,N, M <= 10000000。

显然质数是需要枚举的,设N<M,于是

\[ans=\sum_{p\in prime}\sum_{i=1}^N\sum_{j=1}^M(gcd(i,j)==p)
\]

于是设

\[f(p)=\sum_{i=1}^N\sum_{j=1}^M(gcd(i,j)==p)
\]

\[F(p)=\sum_{i=1}^N\sum_{j=1}^M(p|gcd(i,j))=[N/p][M/p]
\]

由Mobius反演定理,我们有

\[f(p)=\sum_{p|d}F(d)\mu(d/p)
\]

于是

\[ans=\sum_{p\in prime}\sum_{p|d}F(d)\mu(d/p)=\sum_{d=1}^NF(d)\sum_{p|d,p\in prime}\mu(d/p)
\]

显然后式是可以\(O(nlon(n))\)维护的,对F(d)进行整除分块即可。

参考代码

#include <iostream>
#include <cstdio>
#define il inline
#define ri register
#define ll long long
#define limit 10000000
#define swap(x,y) x^=y^=x^=y
using namespace std;
bool check[limit+1];
int mb[limit+1],prime[700000],pt,
opt[limit+1];ll ans;
il void read(int&);
il int min(int,int);
void pen(ll),prepare();
int main(){
int lsy,a,b,i,j;read(lsy);
prepare();while(lsy--){
read(a),read(b),ans&=0;
if(a>b)swap(a,b);
for(i=1;i<=a;i=j+1){
j=min(a/(a/i),b/(b/i));
ans+=(ll)(a/i)*(b/i)*(opt[j]-opt[i-1]);
}pen(ans),putchar('\n');
}
return 0;
}
void prepare(){
check[1]=mb[1]=1;
for(ri int i(2),j;i<=limit;++i){
if(!check[i])prime[++pt]=i,mb[i]=-1;
for(j=1;j<=pt&&prime[j]<=limit/i;++j){
check[i*prime[j]]|=true;
if(!(i%prime[j]))break;
mb[i*prime[j]]=-mb[i];
}
}for(ri int i(1),j;i<=pt;++i)
for(j=1;j*prime[i]<=limit;++j)
opt[j*prime[i]]+=mb[j];
for(ri int i(1);i<=limit;++i)opt[i]+=opt[i-1];
}
il int min(int a,int b){
return a<b?a:b;
}
void pen(ll x){
if(x>9)pen(x/10);putchar(x%10+48);
}
il void read(int &x){
x&=0;ri char c;while(c=getchar(),c<'0'||c>'9');
while(c>='0'&&c<='9')x=(x<<1)+(x<<3)+(c^48),c=getchar();
}

YY的GCD的更多相关文章

  1. BZOJ 2820: YY的GCD [莫比乌斯反演]【学习笔记】

    2820: YY的GCD Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 1624  Solved: 853[Submit][Status][Discu ...

  2. [BZOJ2820]YY的GCD

    [BZOJ2820]YY的GCD 试题描述 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少 ...

  3. bzoj 2820 YY的GCD 莫比乌斯反演

    题目大意: 给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对 这里就抄一下别人的推断过程了 后面这个g(x) 算的方法就是在线性 ...

  4. 【BZOJ】【2820】YY的GCD

    莫比乌斯反演 PoPoQQQ讲义第二题. 暴力枚举每个质数,然后去更新它的倍数即可,那个g[x]看不懂就算了…… 为什么去掉了一个memset就不T了→_→…… /****************** ...

  5. 【莫比乌斯反演】关于Mobius反演与gcd的一些关系与问题简化(bzoj 2301 Problem b&&bzoj 2820 YY的GCD&&BZOJ 3529 数表)

    首先我们来看一道题  BZOJ 2301 Problem b Description 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd( ...

  6. 【BZOJ 2820】 YY的GCD (莫比乌斯+分块)

    YY的GCD   Description 神犇YY虐完数论后给傻×kAc出了一题 给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少 ...

  7. 【BZOJ2820】YY的GCD(莫比乌斯反演)

    [BZOJ2820]YY的GCD(莫比乌斯反演) 题面 讨厌权限题!!!提供洛谷题面 题解 单次询问\(O(n)\)是做过的一模一样的题目 但是现在很显然不行了, 于是继续推 \[ans=\sum_{ ...

  8. 洛谷【P2257】YY的GCD

    YY的GCD 原题链接 这应该是我做的第一道莫比乌斯反演的题目. 题目描述 神犇YY虐完数论后给傻×kAc出了一题 给定N, M,求1<=x<=N, 1<=y<=M且gcd(x ...

  9. 【BZOJ2820】YY的GCD

    [BZOJ2820]YY的GCD Description 神犇YY虐完数论后给傻×kAc出了一题 给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的( ...

随机推荐

  1. Jmeter笔记(Ⅱ)使用Jmeter实现轻量级的接口自动化测试

    接口测试虽然作为版本的一环,但是也是有一套完整的体系,有接口的功能测试.性能测试.安全测试:同时,由于接口的特性,接口的自动化低成本高收益的,使用一些开源工具或一些轻量级的方法,在测试用例开发的成本不 ...

  2. Spring中@Async

    在Java应用中,绝大多数情况下都是通过同步的方式来实现交互处理的:但是在处理与第三方系统交互的时候,容易造成响应迟缓的情况,之前大部分都是使用多线程来完成此类任务,其实,在spring 3.x之后, ...

  3. 数据迁移时 提示 No changes detected

    1.删除数据库中django_migrations 中对应的信息 2.删除app下的migrations对应的文件 3.重新执行就可成功 如不成功 ,直接删库 ,重新迁移

  4. php通过pecl方式安装扩展

    安装pecl cd /usr/local/php/bin/ wget http://pear.php.net/go-pear.phar -O go-pear.php php go-pear.php # ...

  5. ORACLE中 大量数据插入表 SQL

    declare g_commit_count number; cursor cu1 is select gl_flexfields_pkg.get_description_sql(gcc.chart_ ...

  6. day14 python各种推导式详解

    推导式的套路 之前我们已经学习了最简单的列表推导式和生成器表达式.但是除此之外,其实还有字典推导式.集合推导式等等. 下面是一个以列表推导式为例的推导式详细格式,同样适用于其他推导式. variabl ...

  7. Elasticsearch从入门到精通之Elasticsearch集群内的原理

    上一章节我介绍了Elasticsearch安装与运行,本章节及后续章节将全方位介绍 Elasticsearch 的工作原理 在这个章节中,我将会再进一步介绍 cluster . node . shar ...

  8. [批处理]使用Log.io监控日志变化

    背景 多台服务器安装了不同的开发服务,增加日志监控以随时处理情况 方案 log.io 环境 NodeJs 安装 1.log.io直接无法安装上,使用log.io-ts安装上 npm install - ...

  9. CentOS7操作Redis4.0

    单机安装 1. 从官网下载 redis-4.0.10.tar.gz 到本地,然后上传到VMware虚拟机上,存放地址随意. 2. 解压: tar -zxvf redis-4.0.10.tar.gz 3 ...

  10. 题解 Luogu P3623 [APIO2008]免费道路

    [APIO2008]免费道路 题目描述 新亚(New Asia)王国有 N 个村庄,由 M 条道路连接.其中一些道路是鹅卵石路,而其它道路是水泥路.保持道路免费运行需要一大笔费用,并且看上去 王国不可 ...