根据规则可知 假设 (a,b) 可以到达坐标(aa,bb) 那么 aa=a*x+b*y  x y 必定有解  所以 我们只要求两个坐标的gcd看是否相等就好

#include<bits/stdc++.h>
using namespace std;
#define maxn 50005
#define LL long long
//LL  a[maxn],b[maxn],ans=0;
priority_queue<int,vector<int>,greater<int> >q;
LL gcd(LL a,LL b){
   ? a:gcd(b,a%b);
}
int main(){
  int t;
  cin>>t;
  while(t--){
     LL x,y,xx,yy;
     cin>>x>>y>>xx>>yy;
     if(gcd(x,y)==gcd(xx,yy)){
        cout<<"Yes"<<endl;
     }else{
        cout<<"No"<<endl;
     }
  }
  ;
}

51Nod--1247 可能的路径(gcd)的更多相关文章

  1. 51nod 1247 可能的路径(gcd)

    传送门 题意 略 分析 有以下结论 \(1.(x,y)->(y,x)\) \(2.(x,y)->(a,b)==>(a,b)->(x,y)\) 证明 做如下变换 \((a,b)- ...

  2. AC日记——可能的路径 51nod 1247

    可能的路径 思路: 看到题目想到gcd: 仔细一看是更相减损: 而gcd是更相减损的优化版: 所以,对于每组数据判断gcd是否相等就好: 来,上代码: #include <cstdio> ...

  3. 51nod最长递增路径:(还不错的图)

    一个无向图,可能有自环,有重边,每条边有一个边权.你可以从任何点出发,任何点结束,可以经过同一个点任意次.但是不能经过同一条边2次,并且你走过的路必须满足所有边的权值严格单调递增,求最长能经过多少条边 ...

  4. CF1101D GCD Counting(数学,树的直径)

    几个月的坑终于补了…… 题目链接:CF原网  洛谷 题目大意:一棵 $n$ 个点的树,每个点有点权 $a_i$.一条路径的长度定义为该路径经过的点数.一条路径的权值定义为该路径经过所有点的点权的 GC ...

  5. GCD Counting Codeforces - 990G

    https://www.luogu.org/problemnew/show/CF990G 耶,又一道好题被我浪费掉了,不会做.. 显然可以反演,在这之前只需对于每个i,统计出有多少(x,y),满足x到 ...

  6. [codeforces 804F. Fake bullions]

    题目大意: 传送门. 给一个n个点的有向完全图(即任意两点有且仅有一条有向边). 每一个点上有$S_i$个人,开始时其中有些人有真金块,有些人没有金块.当时刻$i$时,若$u$到$v$有边,若$u$中 ...

  7. Educational Codeforces Round 58 Div. 2 自闭记

    明明多个几秒就能场上AK了.自闭. A:签到. #include<iostream> #include<cstdio> #include<cmath> #inclu ...

  8. [CODECHEF]TREECNT2

    题意:一棵带边权的树,边权可单边修改,问初始时和每次修改后有多少条路径$\gcd=1$ 首先考虑用反演求答案,设$f(n)$为路径$\gcd=n$的路径条数,$g(n)$为路径$\gcd$是$n$倍数 ...

  9. ZR提高失恋测2(9.7)

    ZR提高失恋测2(9.7) 网址http://www.zhengruioi.com/contest/392 版权原因,不放题面 A 首先,我们发现对于匹配串\(s\)中所有满足\(s_i \not = ...

  10. 51nod 1575 Gcd and Lcm

    题目链接:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1575 万年巨坑终于填掉了…… 首先是煞笔西瓜的做题历程O_O. ...

随机推荐

  1. 自定义Progress小控件

    progress各种各样的都有,自定义大多数也是简单的,根据业务需求来自己定义,记录一下,先上效果图 本来想找个第三方改改就上的,不过自己的业务需求有点不搭,一下子没找到合适的,也没这么多时间去找了, ...

  2. 电脑一键U盘启动快捷键

    下面是我特意列出的品牌电脑.笔记本电脑.组装电脑一键U盘启动快捷键对应列表,仅供大家查阅参考! [品牌-笔记本电脑] 笔记本品牌  启动按键 联想笔记本  F12 宏基笔记本  F12 华硕笔记本   ...

  3. Centos7VMware虚拟机最小化安装后,安装Tenda U12 USB无线网卡驱动

    前几天买下了Tenda U12 USB 无线网卡 ,想连接上无线玩玩,可惜买下折腾了一周才解决他它驱动问题,前后在VMware上装了十多次,测试了好几个内核版本才搞定,好了废话不多说,分享下我安装过程 ...

  4. 各种文件用JS转Base64之后的data类型

    1.txt       data:text/plain;base64, 2.doc     data:application/msword;base64, 3.docx   data:applicat ...

  5. SQLServer之存储过程简介

    存储过程定义 存储的过程 (存储过程(数据库引擎)) 是存储在数据库中的可执行对象. 存储过程分类 系统存储过程   系统存储过程是 SQL Server系统自身提供的存储过程,可以作为命令执行各种操 ...

  6. python模块(os,sys,hashlib,collections)

    列出目录下所有文件 os.listdir('dirname'):列出指定目录下的所有文件和子目录,包括隐藏文件,并以列表方式返回. 创建文件夹: os.mkdir('文件夹')    创建文件夹 os ...

  7. 炫龙炎魔T1笔记本 Win7 系统安装

    系统链接:https://pan.baidu.com/s/1T5FdJf1jhTj78vEBYCXxyA 密码:rl7m 1.制作系统盘(下载文件中有教程),插好U盘,重启计算机 2.按F2进入BOS ...

  8. Dynamics 365 CRM 开发架构简介

    Dynamics 365 CRM提供了多种编程模型,你可以灵活地按需选用最佳模式. 本文是对Dynamics 365 CRM编程模型的综述. 概览 下图表明了Dynamics 365 CRM的主要可编 ...

  9. Linux运维高级-核心知识提高

    一.Linux之定时任务crond 二.Linux之用户管理 三.Linux之初识磁盘 四.Linux之磁盘管理 五.Linux三剑客-SED 六.Linux三剑客-AWK 七.初识shell编程 八 ...

  10. java获取类加载路径和项目根路径的5种方法

    // 第一种:获取类加载的根路径 D:\IDEAWorkspace\hs-bluetooth-lock\src\applications\bluetooth-api\target\classes Fi ...