nsq (三) 消息传输的可靠性和持久化[二]diskqueue
剖析nsq消息队列-目录
上一篇主要说了一下nsq是如何保证消息被消费端成功消费,大概提了一下消息的持久化,--mem-queue-size
设置为 0,所有的消息将会存储到磁盘。
总有人说nsq
的持久化问题,消除疑虑的方法就是阅读原码做benchmark测试,个人感觉nsq
还是很靠谱的。
nsq
自己实现了一个先进先出的消息文件队列go-diskqueue是把消息保存到本地文件内,很值得分析一下他的实现过程。
整体处理逻辑
go-diskqueue
会启动一个gorouting
进行读写数据也就是方法ioLoop
会根据你设置的参数来进行数据的读写,流程图如下
这个图画的也不是特别的准确
ioLoop
用的是select
并不是if else
当有多个条件为true
时,会随机选一个进行执行
nsq
生成的数据大致如下:
xxxx.diskqueue.meta.dat
元数据保存了未读消息的长度,读取和存入数据的编号和读取位置
xxxx.diskqueue.编号.dat
消息保存的文件,每一个消息的存储:4Byte消息的长度+消息
参数说明
一些主要的参数和约束说明
这些参数的使用在后面的处理逻辑中会提到
// diskQueue implements a filesystem backed FIFO queue
type diskQueue struct {
// run-time state (also persisted to disk)
// 读取数据的位置
readPos int64
// 写入数据的位置
writePos int64
// 读取文件的编号
readFileNum int64
// 写入文件的编号
writeFileNum int64
// 未处理的消息总数
depth int64
// instantiation time metadata
// 每个文件的大小限制
maxBytesPerFile int64 // currently this cannot change once created
// 每条消息的最小大小限制
minMsgSize int32
// 每条消息的最大大小限制
maxMsgSize int32
// 缓存消息有多少条后进行写入
syncEvery int64 // number of writes per fsync
// 自动写入消息文件的时间间隔
syncTimeout time.Duration // duration of time per fsync
exitFlag int32
needSync bool
// keeps track of the position where we have read
// (but not yet sent over readChan)
// 下一条消息的位置
nextReadPos int64
// 下一条消息的文件编号
nextReadFileNum int64
// 读取的文件
readFile *os.File
// 写入的文件
writeFile *os.File
// 读取的buffer
reader *bufio.Reader
// 写入的buffer
writeBuf bytes.Buffer
// exposed via ReadChan()
// 读取数据的channel
readChan chan []byte
//.....
}
数据
元数据
读写数据信息的元数据保存在xxxxx.diskqueue.meta.data文件内主要用到代码里的字段如下
未处理的消息总数 depth
读取文件的编号 readFileNum
读取数据的位置 readPos
写入文件的编号 writeFileNum
写入数据的位置 writePos
真实数据如下
15
0,22
3,24
保存元数据信息
func (d *diskQueue) persistMetaData() error {
// ...
fileName := d.metaDataFileName()
tmpFileName := fmt.Sprintf("%s.%d.tmp", fileName, rand.Int())
// write to tmp file
f, err = os.OpenFile(tmpFileName, os.O_RDWR|os.O_CREATE, 0600)
// 元数据信息
_, err = fmt.Fprintf(f, "%d\n%d,%d\n%d,%d\n",
atomic.LoadInt64(&d.depth),
d.readFileNum, d.readPos,
d.writeFileNum, d.writePos)
// 保存
f.Sync()
f.Close()
// atomically rename
return os.Rename(tmpFileName, fileName)
}
得到元数据信息
func (d *diskQueue) retrieveMetaData() error {
// ...
fileName := d.metaDataFileName()
f, err = os.OpenFile(fileName, os.O_RDONLY, 0600)
// 读取数据并赋值
var depth int64
_, err = fmt.Fscanf(f, "%d\n%d,%d\n%d,%d\n",
&depth,
&d.readFileNum, &d.readPos,
&d.writeFileNum, &d.writePos)
//...
atomic.StoreInt64(&d.depth, depth)
d.nextReadFileNum = d.readFileNum
d.nextReadPos = d.readPos
return nil
}
消息数据
写入一条数据
ioLoop
中发现有数据写入时,会调用writeOne
方法,把消息保存到文件内
select {
// ...
case dataWrite := <-d.writeChan:
count++
d.writeResponseChan <- d.writeOne(dataWrite)
// ...
func (d *diskQueue) writeOne(data []byte) error {
var err error
if d.writeFile == nil {
curFileName := d.fileName(d.writeFileNum)
d.writeFile, err = os.OpenFile(curFileName, os.O_RDWR|os.O_CREATE, 0600)
// ...
if d.writePos > 0 {
_, err = d.writeFile.Seek(d.writePos, 0)
// ...
}
}
dataLen := int32(len(data))
// 判断消息的长度是否合法
if dataLen < d.minMsgSize || dataLen > d.maxMsgSize {
return fmt.Errorf("invalid message write size (%d) maxMsgSize=%d", dataLen, d.maxMsgSize)
}
d.writeBuf.Reset()
// 写入4字节的消息长度,以大端序保存
err = binary.Write(&d.writeBuf, binary.BigEndian, dataLen)
if err != nil {
return err
}
// 写入消息
_, err = d.writeBuf.Write(data)
if err != nil {
return err
}
// 写入到文件
_, err = d.writeFile.Write(d.writeBuf.Bytes())
// ...
// 计算写入位置,消息数量加1
totalBytes := int64(4 + dataLen)
d.writePos += totalBytes
atomic.AddInt64(&d.depth, 1)
// 如果写入位置大于 单个文件的最大限制, 则持久化文件到硬盘
if d.writePos > d.maxBytesPerFile {
d.writeFileNum++
d.writePos = 0
// sync every time we start writing to a new file
err = d.sync()
// ...
}
return err
}
写入完消息后,会判断当前的文件大小是否已经已于maxBytesPerFile
如果大,就持久化文件到硬盘,然后重新打开一个新编号文件,进行写入。
什么时候持久化文件到硬盘
调用sync()
方法会持久化文件到硬盘,然后重新打开一个新编号文件,进行写入。
有几个地方调用会调用这个方法:
- 一个写入文件的条数达到了
syncEvery
的值时,也就是初始化时设置的最大的条数。会调用sync()
syncTimeout
初始化时设置的同步时间间隔,如果这个时间间隔到了,并且写入的文件条数>0的时候,会调用sync()
- 还有就是上面说过的
writeOne
方法,写入完消息后,会判断当前的文件大小是否已经已于maxBytesPerFile
如果大,会调用sync()
- 当读取文件时,把整个文件读取完时,会删除这个文件并且会把
needSync
设置为true
,ioLoop
会调用sync()
- 还有就是
Close
的时候,会调用sync()
func (d *diskQueue) sync() error {
if d.writeFile != nil {
// 把数据 flash到硬盘,关闭文件并设置为 nil
err := d.writeFile.Sync()
if err != nil {
d.writeFile.Close()
d.writeFile = nil
return err
}
}
// 保存元数据信息
err := d.persistMetaData()
// ...
d.needSync = false
return nil
}
读取一条数据
元数据保存着 读取文件的编号 readFileNum
和读取数据的位置 readPos
并且diskQueue
暴露出了一个方法来,通过channel
来读取数据
func (d *diskQueue) ReadChan() chan []byte {
return d.readChan
}
ioLoop
里,当发现读取位置小于写入位置 或者读文件编号小于写文件编号,并且下一个读取位置等于当前位置时才会读取一条数据,然后放在一个外部全局变量 dataRead
里,并把 读取的channel
赋值监听 r = d.readChan
,当外部有人读取了消息,则进行moveForward
操作
func (d *diskQueue) ioLoop() {
var dataRead []byte
var err error
var count int64
var r chan []byte
for {
// ...
if (d.readFileNum < d.writeFileNum) || (d.readPos < d.writePos) {
if d.nextReadPos == d.readPos {
dataRead, err = d.readOne()
if err != nil {
d.handleReadError()
continue
}
}
r = d.readChan
} else {
r = nil
}
select {
// ...
case r <- dataRead:
count++
// moveForward sets needSync flag if a file is removed
d.moveForward()
// ...
}
}
// ...
}
readOne
从文件里读取一条消息,4个bit的大小,然后读取具体的消息。如果读取位置大于最大文件限制,则close。在moveForward里会进行删除操作
func (d *diskQueue) readOne() ([]byte, error) {
var err error
var msgSize int32
// 如果readFile是nil,打开一个新的
if d.readFile == nil {
curFileName := d.fileName(d.readFileNum)
d.readFile, err = os.OpenFile(curFileName, os.O_RDONLY, 0600)
// ...
d.reader = bufio.NewReader(d.readFile)
}
err = binary.Read(d.reader, binary.BigEndian, &msgSize)
// ...
readBuf := make([]byte, msgSize)
_, err = io.ReadFull(d.reader, readBuf)
totalBytes := int64(4 + msgSize)
// ...
d.nextReadPos = d.readPos + totalBytes
d.nextReadFileNum = d.readFileNum
// 如果读取位置大于最大文件限制,则close。在moveForward里会进行删除操作
if d.nextReadPos > d.maxBytesPerFile {
if d.readFile != nil {
d.readFile.Close()
d.readFile = nil
}
d.nextReadFileNum++
d.nextReadPos = 0
}
return readBuf, nil
}
moveForward
方法会查看读取的编号,如果发现下一个编号 和当前的编号不同时,则删除旧的文件。
func (d *diskQueue) moveForward() {
oldReadFileNum := d.readFileNum
d.readFileNum = d.nextReadFileNum
d.readPos = d.nextReadPos
depth := atomic.AddInt64(&d.depth, -1)
// see if we need to clean up the old file
if oldReadFileNum != d.nextReadFileNum {
// sync every time we start reading from a new file
d.needSync = true
fn := d.fileName(oldReadFileNum)
err := os.Remove(fn)
// ...
}
d.checkTailCorruption(depth)
nsq (三) 消息传输的可靠性和持久化[二]diskqueue的更多相关文章
- nsq (三) 消息传输的可靠性和持久化[一]
上两篇帖子主要说了一下nsq的拓扑结构,如何进行故障处理和横向扩展,保证了客户端和服务端的长连接,连接保持了,就要传输数据了,nsq如何保证消息被订阅者消费,如何保证消息不丢失,就是今天要阐述的内容. ...
- 四种途径提高RabbitMQ传输消息数据的可靠性(一)
前言 RabbitMQ虽然有对队列及消息等的一些持久化设置,但其实光光只是这一个是不能够保障数据的可靠性的,下面我们提出这样的质疑: (1)RabbitMQ生产者是不知道自己发布的消息是否已经正确达到 ...
- 深入浅出 JMS(三) - ActiveMQ 消息传输
深入浅出 JMS(三) - ActiveMQ 消息传输 一.消息协商器(Message Broker) broke:消息的交换器,就是对消息进行管理的容器.ActiveMQ 可以创建多个 Broker ...
- RabbitMQ系列(四)--消息如何保证可靠性传输以及幂等性
一.消息如何保证可靠性传输 1.1.可能出现消息丢失的情况 1.Producer在把Message发送Broker的过程中,因为网络问题等发生丢失,或者Message到了Broker,但是出了问题,没 ...
- RabbitMQ原理与相关操作(三)消息持久化
现在聊一下RabbitMQ消息持久化: 问题及方案描述 1.当有多个消费者同时收取消息,且每个消费者在接收消息的同时,还要处理其它的事情,且会消耗很长的时间.在此过程中可能会出现一些意外,比如消息接收 ...
- RabbitMQ(三):消息持久化策略
原文:RabbitMQ(三):消息持久化策略 一.前言 在正常的服务器运行过程中,时常会面临服务器宕机重启的情况,那么我们的消息此时会如何呢?很不幸的事情就是,我们的消息可能会消失,这肯定不是我们希望 ...
- RabbitMQ的消息传输保障三个层级
这里只简单介绍一下三个层级,笔记摘录自<RabbitMQ实战指南>朱忠华作者 消息可靠传输一般是业务系统接入消息中间件时候首要考虑的问题,一般消息中间件的消息传输保障分为三个层级 1 A ...
- 转:TCP为什么要3次握手和4次挥手时等待2MSL、 TCP如何保证消息顺序以及可靠性到达
关于tcp三次握手.四次挥手可以看这里:TCP与UDP的差别以及TCP三次握手.四次挥手 1.TCP为甚要3次握手? 在谢希仁著<计算机网络>第四版中讲“三次握手”的目的是“为了防止已失效 ...
- Rsyslog的三种传输协议简要介绍
rsyslog的三种传输协议 rsyslog 可以理解为多线程增强版的syslog. rsyslog提供了三种远程传输协议,分别是: 1. UDP 传输协议 基于传统UDP协议进行远程日志传输,也是传 ...
随机推荐
- jQuery.noConflict()解决imgBox.js依赖jquery版本问题
jQuery提供两种点击图片放大效果出处 在使用imgbox.js是出现的jquery版本不兼容问题,之后了解到jQuery.noConflict()的用法 jQuery.noConflict()的存 ...
- Arouter核心思路和源码详解
前言 阅读本文之前,建议读者: 对Arouter的使用有一定的了解. 对Apt技术有所了解. Arouter是一款Alibaba出品的优秀的路由框架,本文不对其进行全面的分析,只对其最重要的功能进行源 ...
- 树莓派3B/3B+ 清华镜像系统和安装中文输入法Fcitx及Google拼音输入法
你还在为树莓派无法安装中文输入法而到处找教程吗? 你还在为树莓派每次下载都要远隔重洋获取资源,龟速下载而烦恼吗? 为了解决这个问题,在这篇树莓派教程中,我将手把手叫你怎样安装 清华镜像系统和中文输入法 ...
- Bran的内核开发教程(bkerndev)-06 全局描述符表(GDT)
全局描述符表(GDT) 在386平台各种保护措施中最重要的就是全局描述符表(GDT).GDT为内存的某些部分定义了基本的访问权限.我们可以使用GDT中的一个索引来生成段冲突异常, 让内核终止执行异 ...
- 项目代码管理工具Git的总结
在项目的开发中,代码的同步管理很重要,团队的几个人可以通过免费的github管理自己的开源项目代码,高效方便.下面说说,开发中经常用到的git指令操作,基于github平台. 0.配置提交者的账户和邮 ...
- luogu P4035 [JSOI2008]球形空间产生器
[返回模拟退火略解] 题目描述 今有 n+1n+1n+1 个 nnn 维的点,它们都在一个球上.求它们所在球的球心. Solution 4035\text{Solution 4035}Solution ...
- USACO环绕岛屿Surround the Islands 并查集 枚举暴力
题目描述 Farmer John has bought property in the Caribbean and is going to try to raise dairy cows on a b ...
- 【Cocos2d-x】学习笔记目录
从2019年7月开始学习游戏引擎Cocos2dx,版本3.17. 学习笔记尽量以白话的形式表达自己对源码的理解,而不是大篇幅复制粘贴源码. 本人水平有限,欢迎批评指正! Cocos2d-x 学习笔记 ...
- 真——Springcloud支持Https
很久不写了,因为一直没有一个项目的需求推动,担心写的东西可能不是太实际.其间学习的事倒是做了不少,设计模式.领域开发.Antlr.kubernetes等等,其实大部分都记在纸质笔记上了.. 基于对新技 ...
- 【阿里云IoT+YF3300】6.物联网设备报警配置
纵然5G时代已经在时代的浪潮中展现出了它的身影,但是就目前的物联网环境中,网络问题仍旧是一个比较突出的硬伤.众所周知,在当前的物联网规划中,与其说是实现万物互联,倒不如说是行业指标数据监控.对于一些特 ...