Java之戳中痛点 - (8)synchronized深度解析
概览:
- 简介:作用、地位、不控制并发的影响
- 用法:对象锁和类锁
- 多线程访问同步方法的7种情况
- 性质:可重入、不可中断
- 原理:加解锁原理、可重入原理、可见性原理
- 缺陷:效率低、不够灵活、无法预判是否成功获取到锁
- 如何选择Lock或Synchronized
- 如何提高性能、JVM如何决定哪个线程获取锁
- 总结
后续会有代码演示,测试环境 JDK8、IDEA
一、简介
1、作用
能够保证在同一时刻最多只有一个线程执行该代码,以保证并发安全的效果。
2、地位
- Synchronized是Java关键字,Java原生支持
- 最基本的互斥同步手段
- 并发编程的元老级别
3、不控制并发的影响
测试:两个线程同时a++,猜一下结果
package cn.jsonshare.java.base.synchronizedtest;
/**
* 不使用synchronized,两个线程同时a++
*
* @author JSON
* @date 2019-08-29
*/
public class SynchronizedTest1 implements Runnable{
static SynchronizedTest1 st = new SynchronizedTest1();
static int a = 0;
/**
* 不使用synchronized,两个线程同时a++
*/
public static void main(String[] args) throws Exception{
Thread t1 = new Thread(st);
Thread t2 = new Thread(st);
t1.start();
t2.start();
t1.join();
t2.join();
System.out.println(a);
}
@Override
public void run(){
for(int i=0; i<10000; i++){
a++;
}
}
}
预期是20000,但多次执行的结果都小于20000
10108
11526
10736
...
二、用法:对象锁和类锁
1、对象锁
- 代码块形式:手动指定锁对象
- 方法锁形式:synchronized修饰方法,锁对象默认为this
package cn.jsonshare.java.base.synchronizedtest;
/**
* 对象锁实例: 代码块形式
*
* @author JSON
* @date 2019-08-29
*/
public class SynchronizedTest2 implements Runnable{
static SynchronizedTest2 st = new SynchronizedTest2();
public static void main(String[] args) {
Thread t1 = new Thread(st);
Thread t2 = new Thread(st);
t1.start();
t2.start();
while(t1.isAlive() || t2.isAlive()){
}
System.out.println("run over");
}
@Override
public void run(){
synchronized (this){
System.out.println("开始执行:" + Thread.currentThread().getName());
try {
// 模拟执行内容
Thread.sleep(3000);
}catch (Exception e){
e.printStackTrace();
}
System.out.println("执行结束:" + Thread.currentThread().getName());
}
}
}
package cn.jsonshare.java.base.synchronizedtest;
/**
* 对象锁实例:synchronized方法
* @author JSON
* @date 2019-08-29
*/
public class SynchronizedTest3 implements Runnable{
static SynchronizedTest3 st = new SynchronizedTest3();
public static void main(String[] args) throws Exception{
Thread t1 = new Thread(st);
Thread t2 = new Thread(st);
t1.start();
t2.start();
t1.join();
t2.join();
System.out.println("run over");
}
@Override
public void run(){
method();
}
public synchronized void method(){
System.out.println("开始执行:" + Thread.currentThread().getName());
try {
// 模拟执行内容
Thread.sleep(3000);
}catch (Exception e){
e.printStackTrace();
}
System.out.println("执行结束:" + Thread.currentThread().getName());
}
}
结果:
开始执行:Thread-0
执行结束:Thread-0
开始执行:Thread-1
执行结束:Thread-1
run over
2、类锁
概念:Java类可能有多个对象,但只有一个Class对象
本质:所谓的类锁,不过是Class对象的锁而已
用法和效果:类锁只能在同一时刻被一个对象拥有
形式1:synchronized加载static方法上
形式2:synchronized(*.class)代码块
package cn.jsonshare.java.base.synchronizedtest;
/**
* 类锁:synchronized加载static方法上
*
* @author JSON
* @date 2019-08-29
*/
public class SynchronizedTest4 implements Runnable{
static SynchronizedTest4 st1 = new SynchronizedTest4();
static SynchronizedTest4 st2 = new SynchronizedTest4();
public static void main(String[] args) throws Exception{
Thread t1 = new Thread(st1);
Thread t2 = new Thread(st2);
t1.start();
t2.start();
t1.join();
t2.join();
System.out.println("run over");
}
@Override
public void run(){
method();
}
public static synchronized void method(){
System.out.println("开始执行:" + Thread.currentThread().getName());
try {
// 模拟执行内容
Thread.sleep(3000);
}catch (Exception e){
e.printStackTrace();
}
System.out.println("执行结束:" + Thread.currentThread().getName());
}
}
package cn.jsonshare.java.base.synchronizedtest;
/**
* 类锁:synchronized(*.class)代码块
*
* @author JSON
* @date 2019-08-29
*/
public class SynchronizedTest5 implements Runnable{
static SynchronizedTest4 st1 = new SynchronizedTest4();
static SynchronizedTest4 st2 = new SynchronizedTest4();
public static void main(String[] args) throws Exception{
Thread t1 = new Thread(st1);
Thread t2 = new Thread(st2);
t1.start();
t2.start();
t1.join();
t2.join();
System.out.println("run over");
}
@Override
public void run(){
method();
}
public void method(){
synchronized(SynchronizedTest5.class){
System.out.println("开始执行:" + Thread.currentThread().getName());
try {
// 模拟执行内容
Thread.sleep(3000);
}catch (Exception e){
e.printStackTrace();
}
System.out.println("执行结束:" + Thread.currentThread().getName());
}
}
}
结果:
开始执行:Thread-0
执行结束:Thread-0
开始执行:Thread-1
执行结束:Thread-1
run over
三、多线程访问同步方法的7种情况
- 两个线程同时访问一个对象的相同的synchronized方法
- 两个线程同时访问两个对象的相同的synchronized方法
- 两个线程同时访问两个对象的相同的static的synchronized方法
- 两个线程同时访问同一对象的synchronized方法与非synchronized方法
- 两个线程访问同一对象的不同的synchronized方法
- 两个线程同时访问同一对象的static的synchronized方法与非static的synchronized方法
- 方法抛出异常后,会释放锁吗
仔细看下面示例代码结果输出的结果,注意输出时间间隔,来预测结论
场景1:
package cn.jsonshare.java.base.synchronizedtest;
/**
* 两个线程同时访问一个对象的相同的synchronized方法
*
* @author JSON
* @date 2019-08-29
*/
public class SynchronizedScene1 implements Runnable{
static SynchronizedScene1 ss = new SynchronizedScene1();
public static void main(String[] args) throws Exception{
Thread t1 = new Thread(ss);
Thread t2 = new Thread(ss);
t1.start();
t2.start();
t1.join();
t2.join();
System.out.println("run over");
}
@Override
public void run(){
method();
}
public synchronized void method(){
System.out.println("开始执行:" + Thread.currentThread().getName());
try {
// 模拟执行内容
Thread.sleep(3000);
}catch (Exception e){
e.printStackTrace();
}
System.out.println("执行结束:" + Thread.currentThread().getName());
}
}
场景2:
package cn.jsonshare.java.base.synchronizedtest;
/**
* 两个线程同时访问两个对象的相同的synchronized方法
*
* @author JSON
* @date 2019-08-29
*/
public class SynchronizedScene2 implements Runnable{
static SynchronizedScene2 ss1 = new SynchronizedScene2();
static SynchronizedScene2 ss2 = new SynchronizedScene2();
public static void main(String[] args) throws Exception{
Thread t1 = new Thread(ss1);
Thread t2 = new Thread(ss2);
t1.start();
t2.start();
t1.join();
t2.join();
System.out.println("run over");
}
@Override
public void run(){
method();
}
public synchronized void method(){
System.out.println("开始执行:" + Thread.currentThread().getName());
try {
// 模拟执行内容
Thread.sleep(3000);
}catch (Exception e){
e.printStackTrace();
}
System.out.println("执行结束:" + Thread.currentThread().getName());
}
}
场景3:
package cn.jsonshare.java.base.synchronizedtest;
/**
* 两个线程同时访问两个对象的相同的static的synchronized方法
*
* @author JSON
* @date 2019-08-29
*/
public class SynchronizedScene3 implements Runnable{
static SynchronizedScene3 ss1 = new SynchronizedScene3();
static SynchronizedScene3 ss2 = new SynchronizedScene3();
public static void main(String[] args) throws Exception{
Thread t1 = new Thread(ss1);
Thread t2 = new Thread(ss2);
t1.start();
t2.start();
t1.join();
t2.join();
System.out.println("run over");
}
@Override
public void run(){
method();
}
public synchronized static void method(){
System.out.println("开始执行:" + Thread.currentThread().getName());
try {
// 模拟执行内容
Thread.sleep(3000);
}catch (Exception e){
e.printStackTrace();
}
System.out.println("执行结束:" + Thread.currentThread().getName());
}
}
场景4:
package cn.jsonshare.java.base.synchronizedtest;
/**
* 两个线程同时访问同一对象的synchronized方法与非synchronized方法
*
* @author JSON
* @date 2019-08-29
*/
public class SynchronizedScene4 implements Runnable{
static SynchronizedScene4 ss1 = new SynchronizedScene4();
public static void main(String[] args) throws Exception{
Thread t1 = new Thread(ss1);
Thread t2 = new Thread(ss1);
t1.start();
t2.start();
t1.join();
t2.join();
System.out.println("run over");
}
@Override
public void run(){
// 模拟两个线程同时访问 synchronized方法与非synchronized方法
if(Thread.currentThread().getName().equals("Thread-0")){
method1();
}else{
method2();
}
}
public void method1(){
System.out.println("method1开始执行:" + Thread.currentThread().getName());
try {
// 模拟执行内容
Thread.sleep(3000);
}catch (Exception e){
e.printStackTrace();
}
System.out.println("method1执行结束:" + Thread.currentThread().getName());
}
public synchronized void method2(){
System.out.println("method2开始执行:" + Thread.currentThread().getName());
try {
// 模拟执行内容
Thread.sleep(3000);
}catch (Exception e){
e.printStackTrace();
}
System.out.println("method2执行结束:" + Thread.currentThread().getName());
}
}
场景5:
package cn.jsonshare.java.base.synchronizedtest;
/**
* 两个线程访问同一对象的不同的synchronized方法
*
* @author JSON
* @date 2019-08-29
*/
public class SynchronizedScene5 implements Runnable{
static SynchronizedScene5 ss1 = new SynchronizedScene5();
public static void main(String[] args) throws Exception{
Thread t1 = new Thread(ss1);
Thread t2 = new Thread(ss1);
t1.start();
t2.start();
t1.join();
t2.join();
System.out.println("run over");
}
@Override
public void run(){
// 模拟两个线程同时访问不同的synchronized方法
if(Thread.currentThread().getName().equals("Thread-0")){
method1();
}else{
method2();
}
}
public synchronized void method1(){
System.out.println("method1开始执行:" + Thread.currentThread().getName());
try {
// 模拟执行内容
Thread.sleep(3000);
}catch (Exception e){
e.printStackTrace();
}
System.out.println("method1执行结束:" + Thread.currentThread().getName());
}
public synchronized void method2(){
System.out.println("method2开始执行:" + Thread.currentThread().getName());
try {
// 模拟执行内容
Thread.sleep(3000);
}catch (Exception e){
e.printStackTrace();
}
System.out.println("method2执行结束:" + Thread.currentThread().getName());
}
}
场景6:
package cn.jsonshare.java.base.synchronizedtest;
/**
* 两个线程同时访问同一对象的static的synchronized方法与非static的synchronized方法
*
* @author JSON
* @date 2019-08-29
*/
public class SynchronizedScene6 implements Runnable{
static SynchronizedScene6 ss1 = new SynchronizedScene6();
public static void main(String[] args) throws Exception{
Thread t1 = new Thread(ss1);
Thread t2 = new Thread(ss1);
t1.start();
t2.start();
t1.join();
t2.join();
System.out.println("run over");
}
@Override
public void run(){
// 模拟两个线程同时访问static的synchronized方法与非static的synchronized方法
if(Thread.currentThread().getName().equals("Thread-0")){
method1();
}else{
method2();
}
}
public static synchronized void method1(){
System.out.println("method1开始执行:" + Thread.currentThread().getName());
try {
// 模拟执行内容
Thread.sleep(3000);
}catch (Exception e){
e.printStackTrace();
}
System.out.println("method1执行结束:" + Thread.currentThread().getName());
}
public synchronized void method2(){
System.out.println("method2开始执行:" + Thread.currentThread().getName());
try {
// 模拟执行内容
Thread.sleep(3000);
}catch (Exception e){
e.printStackTrace();
}
System.out.println("method2执行结束:" + Thread.currentThread().getName());
}
}
场景7:
package cn.jsonshare.java.base.synchronizedtest;
/**
* 方法抛出异常后,会释放锁吗
*
* @author JSON
* @date 2019-08-29
*/
public class SynchronizedScene7 implements Runnable{
static SynchronizedScene7 ss1 = new SynchronizedScene7();
public static void main(String[] args) throws Exception{
Thread t1 = new Thread(ss1);
Thread t2 = new Thread(ss1);
t1.start();
t2.start();
t1.join();
t2.join();
System.out.println("run over");
}
@Override
public void run(){
method1();
}
public synchronized void method1(){
System.out.println("method1开始执行:" + Thread.currentThread().getName());
try {
// 模拟执行内容
Thread.sleep(3000);
}catch (Exception e){
e.printStackTrace();
}
// 模拟异常
throw new RuntimeException();
//System.out.println("method1执行结束:" + Thread.currentThread().getName());
}
}
总结:
1、两个线程同时访问一个对象的相同的synchronized方法
同一实例拥有同一把锁,其他线程必然等待,顺序执行
2、两个线程同时访问两个对象的相同的synchronized方法
不同的实例拥有的锁是不同的,所以不影响,并行执行
3、两个线程同时访问两个对象的相同的static的synchronized方法
静态同步方法,是类锁,所有实例是同一把锁,其他线程必然等待,顺序执行
4、两个线程同时访问同一对象的synchronized方法与非synchronized方法
非synchronized方法不受影响,并行执行
5、两个线程访问同一对象的不同的synchronized方法
同一实例拥有同一把锁,所以顺序执行(说明:锁的是this对象==同一把锁)
6、两个线程同时访问同一对象的static的synchronized方法与非static的synchronized方法
static同步方法是类锁,非static是对象锁,原理上是不同的锁,所以不受影响,并行执行
7、方法抛出异常后,会释放锁吗
会自动释放锁,这里区别Lock,Lock需要显示的释放锁
3个核心思想:
1、一把锁只能同时被一个线程获取,没有拿到锁的线程必须等待(对应1、5的情景)
2、每个实例都对应有自己的一把锁,不同的实例之间互不影响;
例外:锁对象是*.class以及synchronized被static修饰的时候,所有对象共用同一把锁(对应2、3、4、6情景)
3、无论是方法正常执行完毕还是方法抛出异常,都会释放锁(对应7情景)
补充:
问题:目前进入到被synchronized修饰的方法,这个方法里边调用了非synchronized方法,是线程安全的吗?
package cn.jsonshare.java.base.synchronizedtest;
/**
* 目前进入到被synchronized修饰的方法,这个方法里边调用了非synchronized方法,是线程安全的吗?
*
* @author JSON
* @date 2019-08-29
*/
public class SynchronizedScene8 {
public static void main(String[] args) {
new Thread(() -> {
method1();
}).start();
new Thread(() -> {
method1();
}).start();
}
public static synchronized void method1() {
method2();
}
private static void method2() {
System.out.println(Thread.currentThread().getName() + "进入非Synchronized方法");
try {
Thread.sleep(3000);
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println(Thread.currentThread().getName() + "结束非Synchronized方法");
}
}
结论:这样是线程安全的
四、性质
1、可重入
指的是同一线程的外层函数获取锁之后,内层函数可以直接再次获取该锁
Java典型的可重入锁:synchronized、ReentrantLock
好处:避免死锁,提升封装性
粒度:线程而非调用
情况1:证明同一方法是可重入的
情况2:证明可重入不要求是同一方法
情况3:证明可重入不要求是同一类中的
2、不可中断
一旦这个锁被别的线程获取了,如果我现在想获得,我只能选择等待或者阻塞,直到别的线程释放这个锁,如果别的线程永远不释放锁,那么我只能永远的等待下去。
相比之下,Lock类可以拥有中断的能力,第一点:如果我觉得我等待的时间太长了,有权中断现在已经获取到锁的线程执行;第二点:如果我觉得我等待的时间太长了不想再等了,也可以退出。
五、原理
1、加解锁原理(现象、时机、深入JVM看字节码)
现象:每一个类的实例对应一把锁,每一个synchronized方法都必须首先获得调用该方法的类的实例的锁,方能执行,否则就会阻塞,方法执行完成或者抛出异常,锁被释放,被阻塞线程才能获取到该锁,执行。
获取和释放锁的时机:内置锁或监视器锁
package cn.jsonshare.java.base.synchronizedtest;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;
/**
* method1 等价于 method2
*
* @author JSON
* @date 2019-08-29
*/
public class SynchronizedToLock1 {
Lock lock = new ReentrantLock();
public synchronized void method1(){
System.out.println("执行method1");
}
public void method2(){
lock.lock();
try {
System.out.println("执行method2");
}catch (Exception e){
e.printStackTrace();
}finally {
lock.unlock();
}
}
public static void main(String[] args) {
SynchronizedToLock1 sl = new SynchronizedToLock1();
// method1 等价于 method2
sl.method1();
sl.method2();
}
}
深入JVM看字节码:
...
monitorenter指令
...
monitorexit指令
...
2、可重入原理(加锁次数计数器)
JVM负责跟踪对象被加锁的次数
线程第一次给对象加锁的时候,计数变为1,每当这个相同的线程在此对象上再次获得锁时,计数会递增
每当任务离开时,计数递减,当计数为0的时候,锁被完全释放
3、可见性原理(内存模型)
Java内存模型
线程A向线程B发送数据的过程(JMM控制)
synchronized关键字实现可见性:
被synchronized修饰,那么执行完成后,对对象所做的任何修改都要在释放锁之前,都要从线程内存写入到主内存,所以主内存中的数据是最新的。
六、缺陷
1、效率低
1)、锁的释放情况少(线程执行完成或者异常情况释放)
2)、试图获得锁时不能设定超时(只能等待)
3)、不能中断一个正在试图获得锁的线程(不能中断)
2、不够灵活
加锁和释放的时机比较单一,每个锁仅有单一的条件(某个对象),可能是不够的
比如:读写锁更灵活
3、无法预判是否成功获取到锁
七、常见问题
1、synchronized关键字注意点:
- 锁对象不能为空
- 作用域不宜过大
- 避免死锁
2、如何选择Lock和synchronized关键字?
总结建议(优先避免出错的原则):
- 如果可以的话,尽量优先使用java.util.concurrent各种类(不需要考虑同步工作,不容易出错)
- 优先使用synchronized,这样可以减少编写代码的量,从而可以减少出错率
- 若用到Lock或Condition独有的特性,才使用Lock或Condition
八、总结
一句话总结synchronized:
JVM会自动通过使用monitor来加锁和解锁,保证了同一时刻只有一个线程可以执行指定的代码,从而保证线程安全,同时具有可重入和不可中断的特性。
Java之戳中痛点 - (8)synchronized深度解析的更多相关文章
- Java之戳中痛点 - (4)i++ 和 ++i 探究原理
先看一个例子: package com.test; public class AutoIncrement { public static void main(String[] args) { int ...
- Java之戳中痛点 - (7)善用Java整型缓存池
先看一段代码: package com.test; import java.util.Scanner; public class IntegerCache { public static void m ...
- Java之戳中痛点 - (6)避免类型自动转换,例如两个整数相除得浮点数遇坑
先来看一个例子: package com.test; public class calculate { /** * 光速30万公里/秒 */ public static final int LIGHT ...
- Java之戳中痛点 - (1)易变业务使用脚本语言编写
脚本语言的3大特征: 1.灵活:脚本语言一般是动态类型,可以不声明变量类型直接使用,也可以在运行期改变类型:2.便捷:脚本语言是解释性语言,在运行期变更非常方便,而不用重启服务3.简单:脚本语言语法比 ...
- Java之戳中痛点 - (5)switch语句break不能忘以及default不同位置的用法
先看一段代码: public class Test{ public static void main(String[] args){ System.)); } } public static Stri ...
- Java之戳中痛点 - (2)取余用偶判断,不要用奇判断
取余判断原则:取余用偶判断,不要用奇判断 先看一个 程序: package com.test; import java.util.Scanner; public class t1 { public s ...
- Java之戳中痛点 - (3)三目运算符的两个操作数类型尽量一致
先看一个例子: package com.test; public class TernaryOperator { public static void main(String[] args) { in ...
- java中对JVM的深度解析、调优工具、垃圾回收
jdk自带的JVM调优工具 jvm监控分析工具一般分为两类,一种是jdk自带的工具,一种是第三方的分析工具.jdk自带工具一般在jdk bin目录下面,以exe的形式直接点击就可以使用,其中包含分析工 ...
- java内存分配和String类型的深度解析
[尊重原创文章出自:http://my.oschina.net/xiaohui249/blog/170013] 摘要 从整体上介绍java内存的概念.构成以及分配机制,在此基础上深度解析java中的S ...
随机推荐
- hdu6406 Taotao Picks Apples(线段树)
Taotao Picks Apples 题目传送门 解题思路 建立一颗线段树,维护当前区间内的最大值maxx和可摘取的苹果数num.最大值很容易维护,主要是可摘取的苹果数怎么合并.合并左右孩子时,左孩 ...
- 四、利用SQL Server 2008 R2创建自动备份计划
(转) 本文主要利用SQL Server 2008 R2自带的"维护计划"创建一个自动备份数据的任务. 首先,启动 Sql Management studio,确保"SQ ...
- javascript基础学习第一天
Javascript 发展过程: 1.出现:为了解决用户和游览器之间的交互. 2.概念:基于对象和事件驱动,运行在游览器客户端的脚本语言. -js在游览器中运行的.(js引擎:执行js代码) -事件: ...
- 基于 HTML5 Canvas 的可交互旋钮组件
前言 此次的 Demo 效果如下: Demo 链接:https://hightopo.com/demo/comp-knob/ 整体思路 组件参数 绘制旋钮 绘制刻度 绘制指针 绘制标尺 绘制文本 1. ...
- get解决乱码的方式
//自定义的解决乱码方式
- Android Studio 'AIDL is missing' 且 不识别R文件
最近刚开始用Android Studio,出的问题还真不少.昨天不知为何不能新建项目了,这两天重装了几次才搞定. 可又出了这个问题: 原因:Compile Sdk Version和Build Tool ...
- WIN10安装VC6.0无法使用的解决办法
WIN10安装VC6.0无法使用的解决办法 VC6.0确实已经太老了 VC6.0实在是很久以前的开发工具了,现在的win10已经对该软件不兼容,但是为了能使抱着怀旧情节的初学者们能像教科书或老前辈们一 ...
- 两份简单的logstash配置
input{http{port=>7474}} filter{ grok{ match =>{ #"message" => "%{COMBINEDAPA ...
- Linux下安装jupyter
又是美好的一天 开开心心写代码 1. 安装ipython, jupyter pip install ipython pip install jupyter 2. 生成配置文件[root@50e ...
- what is the CCA?
Clear Channel Assessment (CCA) is one of two carrier sense mechanisms in WLAN (or WiFi). It is defin ...