说明

很多时候,我们需要运动物体的转弯半径去描述其机器性能。但在大多数的现实条件下,我们只能够获取到运动物体的 GPS 位置点集,并不能直接得到转弯半径或者圆心位置。为此,我们可以利用拟合圆的方式得到圆坐标方程,由此得到转弯半径和圆心位置。

解决过程

关于拟合圆方程的方法有很多,曾经在这篇译文中获益良多代数逼近法、最小二乘法、正交距离回归法来拟合圆及其结果对比(Python)。此系列文中也给出了提及的三种方法的性能及效果对比,最终得出最优的解决方案就是最小二乘法。由于最近的学习中又进一步了解到,可以利用线性代数的方法去求解。本着大学课程中曾学过的《线性代数》知识,所以想着用此方法再加以解决该问题,以作最对比。

接下来,本文就最小二乘法和线性代数的方法求取圆方程作一论述。

准备

引用矩阵计算库MathNet.Numerics。该库是一个强大的科学计算库,遵循 .Net Standard,所以可以跨平台使用。

创建描述圆的类

public class Circle
{
/// <summary>
/// 圆心横坐标
/// </summary>
/// <value></value>
public double X { get; set; }
/// <summary>
/// 圆心纵坐标
/// </summary>
/// <value></value>
public double Y { get; set; }
/// <summary>
/// 圆半径
/// </summary>
/// <value></value>
public double R { get; set; }
}

画图,引用System.Drawing.Common库,以实现跨平台的图像生成。接下来,我们简单的实现一个图像帮助类来进行图像绘制。

public class ImageHelp
{
private Image _image;
public ImageHelp(int width, int height)
{
_image = new Bitmap(width, height);
var graph = Graphics.FromImage(_image);
graph.Clear(Color.White);
}
public void DrawCicle(Circle circle, Brush brush)
{
var graph = Graphics.FromImage(_image);
var count=200;
var fitPoints = new Point[count+1];
var step = 2 * Math.PI / count;
for (int i = 0; i < count; i++)
{
//circle
var p = new Point();
p.X = (int)(circle.X + Math.Cos(i * step) * circle.R);
p.Y = (int)(circle.Y + Math.Sin(i * step) * circle.R);
fitPoints[i] = p;
}
fitPoints[count] = fitPoints[0];//闭合圆
graph.DrawLines(new Pen(brush, 2), fitPoints);
graph.Dispose();
}
public void DrawPoints(double[] X, double[] Y, Brush brush)
{
var graph = Graphics.FromImage(_image);
for (int i = 0; i < X.Length; i++)
{
graph.DrawEllipse(new Pen(brush, 2), (int)X[i], (int)Y[i], 6, 6);
}
graph.Dispose();
}
public void SaveImage(string file)
{
_image.Save(file, System.Drawing.Imaging.ImageFormat.Png);
}
}

模拟点集,由于现实中的数据采集存在着精度、数据记录等众多不确定因素的影像。模拟点集中也将加入一定程度的噪音。以下代码中 x 与 y 中存储着我们的点集数据:

var count = 50;
var step = 2 * Math.PI / 100;
var rd = new Random();
//参照圆
var x0 = 204.1;
var y0 = 213.1;
var r0 = 98.4;
//噪音绝对差
var diff = (int)(r0 * 0.1);
var x = new double[count];
var y = new double[count];
//输出点集
for (int i = 0; i < count; i++)
{
//circle
x[i] = x0 + Math.Cos(i * step) * r0;
y[i] = y0 + Math.Sin(i * step) * r0;
//noise
x[i] += Math.Cos(rd.Next() % 2 * Math.PI) * rd.Next(diff);
y[i] += Math.Cos(rd.Next() % 2 * Math.PI) * rd.Next(diff);
}

最小二乘法

网上有很多的原理解析,上文中提到的译文中也有提及,这里不在过多赘述。直接贴出 c#代码实现:

public Circle LeastSquaresFit(double[] X, double[] Y)
{
if (X.Length < 3)
{
return null;
}
double cent_x = 0.0,
cent_y = 0.0,
radius = 0.0;
double sum_x = 0.0f, sum_y = 0.0f;
double sum_x2 = 0.0f, sum_y2 = 0.0f;
double sum_x3 = 0.0f, sum_y3 = 0.0f;
double sum_xy = 0.0f, sum_x1y2 = 0.0f, sum_x2y1 = 0.0f;
int N = X.Length;
double x, y, x2, y2;
for (int i = 0; i < N; i++)
{
x = X[i];
y = Y[i];
x2 = x * x;
y2 = y * y;
sum_x += x;
sum_y += y;
sum_x2 += x2;
sum_y2 += y2;
sum_x3 += x2 * x;
sum_y3 += y2 * y;
sum_xy += x * y;
sum_x1y2 += x * y2;
sum_x2y1 += x2 * y;
}
double C, D, E, G, H;
double a, b, c;
C = N * sum_x2 - sum_x * sum_x;
D = N * sum_xy - sum_x * sum_y;
E = N * sum_x3 + N * sum_x1y2 - (sum_x2 + sum_y2) * sum_x;
G = N * sum_y2 - sum_y * sum_y;
H = N * sum_x2y1 + N * sum_y3 - (sum_x2 + sum_y2) * sum_y;
a = (H * D - E * G) / (C * G - D * D);
b = (H * C - E * D) / (D * D - G * C);
c = -(a * sum_x + b * sum_y + sum_x2 + sum_y2) / N;
cent_x = a / (-2);
cent_y = b / (-2);
radius = Math.Sqrt(a * a + b * b - 4 * c) / 2;
var result = new Circle();
result.X = cent_x;
result.Y = cent_y;
result.R = radius;
return result;
}

线性代数

从标准圆方程(x-c1)^2+(y-c2)^2=r^2中进行方程变换得到2xc1+2yc2+(r^2−c1^2−c2^2)=x^2+y^2,其中,我们c3替换常量值r^2−c1^2−c2^2,即:r^2−c1^2−c2^2=c3。由此,我们得到2xc1+2yc2+c3=x^2+y^2,将点集带入,方程就只剩三个未知数`c1,c2 和 c3。

简单起见,假设我们有四个点{[0,5],[0,-5],[5,0],[-5,0]},代入方程可得到四个方程:

  0c1 + 10c2 + c3 = 25
0c1 - 10c2 + c3 = 25
10c1 + 0c2 + c3 = 25
-10c1 + 0c2 + c3 = 25

该方程组比较简单,一眼便能看出解。但用线性代数我们可以得到矩阵:

/***************************A**********B******C*/
| 0c1 10c2 1c3| | 0 10 1| |c1| |25|
| 0c1 -10c2 1c3| = | 0 -10 1| * |c2| = |25|
| 10c1 0c2 1c3| | 10 0 1| |c3| |25|
|-10c1 0c2 1c3| |-10 0 1| |25|

在矩阵方程中A*B=C,只需求出矩阵B即可得到方程组的解。c#中MathNet.Numerics可以轻松胜任这一工作:

public Circle LinearAlgebraFit(double[] X, double[] Y)
{
if (X.Length < 3)
{
return null;
}
var count = X.Length;
var a = new double[count, 3];
var c = new double[count, 1];
for (int i = 0; i < count; i++)
{
//matrix
a[i, 0] = 2 * X[i];
a[i, 1] = 2 * Y[i];
a[i, 2] = 1;
c[i, 0] = X[i] * X[i] + Y[i] * Y[i];
}
var A = DenseMatrix.OfArray(a);
var C = DenseMatrix.OfArray(c);
//A*B=C
var B = A.Solve(C);
double c1 = B.At(0, 0),
c2 = B.At(1, 0),
r = Math.Sqrt(B.At(2, 0) + c1 * c1 + c2 * c2);
var result = new Circle();
result.X = c1;
result.Y = c2;
result.R = r;
return result;
}

最后总结

Console.WriteLine($"raw   c1:{x0}, c2:{y0}, r:{r0}");
var fit = new FitCircle();
var sth = new Stopwatch();
sth.Start();
var lsf = fit.LeastSquaresFit(x, y);![](https://img2018.cnblogs.com/blog/1214143/201908/1214143-20190804173821455-1022769486.jpg) Console.WriteLine($"LeastSquaresFit c1:{lsf.X}, c2:{lsf.Y}, r:{lsf.R}, time:{sth.Elapsed}");
sth.Restart();
var laf = fit.LinearAlgebraFit(x, y);
Console.WriteLine($"LinearAlgebraFit c1:{laf.X}, c2:{laf.Y}, r:{laf.R}, time:{sth.Elapsed}");
var img = new ImageHelp(512, 512);
img.DrawPoints(x, y, Brushes.Red);
img.DrawCicle(lsf, Brushes.Green);
img.DrawCicle(laf, Brushes.Orange);
img.SaveImage("graph.jpeg");

控制台输出:

raw   c1:204.1, c2:213.1, r:98.4
LeastSquaresFit c1:204.791071061878, c2:210.86075318831, r:100.436594821545, time:00:00:00.0011029
LinearAlgebraFit c1:204.791071061878, c2:210.860753188315, r:100.436594821541, time:00:00:00.1691119

从结果中可以看出,两种方法的结果基本一样,在小数点后好几位才出现差别。但是其计算效率却差异巨大,最小二乘法比线性代数快上 100 多倍。

在图中,二者重合(绿色被后面的橙色覆盖)。

在最小二乘法中,只有一个及其简单的 for 循环,很少涉及内存写。但在线性代数中,需要进行矩阵的生成DenseMatrix.OfArray,以及矩阵运算,这二者都需要内存写。再者,矩阵计算有着繁重的计算量,这些都在影响着线性代数拟合圆的效率。最终的胜利还是属于最小二乘法。

.net core(c#)拟合圆测试的更多相关文章

  1. (转)最小二乘法拟合圆公式推导及vc实现[r]

    (下文内容为转载,不过已经不清楚原创的是哪里了,特此说明) 转自: http://www.cnblogs.com/dotLive/archive/2006/10/09/524633.html 该网址下 ...

  2. dotnet core TargetFramework 解析顺序测试

    dotnet core TargetFramework 解析顺序测试 Intro 现在 dotnet 的 TargetFramework 越来越多,抛开 .NET Framework 不谈,如果一个类 ...

  3. .NET Core系列 :4 测试

    2016.6.27 微软已经正式发布了.NET Core 1.0 RTM,但是工具链还是预览版,同样的大量的开源测试库也都是至少发布了Alpha测试版支持.NET Core, 这篇文章 The Sta ...

  4. 好代码是管出来的——.Net Core集成测试与数据驱动测试

    软件的单元测试关注是的软件最小可执行单元是否能够正常执行,但是软件是由一个个最小执行单元组成的集合体,单元与单元之间存在着种种依赖或联系,所以在软件开发时仅仅确保最小单元的正确往往是不够的,为了保证软 ...

  5. dotnet core 发布配置(测试数据库和正式数据库自动切换)

    一.起源 在进行项目开发时,常常要求开发环境,测试环境及正式环境的分离,并且不同环境运行的参数都是不一样的,比如监听地址,数据库连接信息等.当然我们把配置信息保存到一个文件中,每次发布的时候,可以先修 ...

  6. [原]Asp.net Core 2.1.2 测试成功Ajax上传文件新解法

    利用layui框架可以上传文件调试拦截成功! [HttpPost] public IActionResult Method1(IFormFile file) { return Json(new{suc ...

  7. opencv——拟合圆

    #include "stdafx.h" #include "cv.h" #include "highgui.h" #include &quo ...

  8. net core 下 接受文件 测试

    /* IFormFileCollection Files 再Request对象下的From对象下的Files对象 public interface IFormFileCollection : IRea ...

  9. 使用Http-Repl工具测试ASP.NET Core 2.2中的Web Api项目

    今天,Visual Studio中没有内置工具来测试WEB API.使用浏览器,只能测试http GET请求.您需要使用Postman,SoapUI,Fiddler或Swagger等第三方工具来执行W ...

随机推荐

  1. Java学习笔记——设计模式之九.建造者模式

     建造者模式(Builder),将一个复杂对象的构建与它的表示分离,使得同样的构建过程可以创建不同的表示. Product类: package cn.happy.design_pattern._09b ...

  2. Java基础知识了解

    第一章 开发前言 一.java语言概述 Java是当下最流行的一种编程语言,至今有20年历史了.Java语言之父是James Gosling. Java是Sun公司(Stanford Universi ...

  3. Programming In Lua 第五章

    1, 2, 3, 4, 5, 6, 7, 8, 9, 第9点非常重点. 10,

  4. 另一个ACM之路建议

    ACM联系建议 一位高手对我的建议: 一般要做到50行以内的程序不用调试.100行以内的二分钟内调试成功.acm主要是考算法的 ,主要时间是花在思考算法上,不是花在写程序与debug上. 下面给个计划 ...

  5. Java中的反射(1)

    Reflection in Java 反射到底是什么呢,我被问到的时候其实也没办法很好的回答这个问题,翻一翻博客,然后逐条讲解.今天干脆就整合一下,免得以后还要去翻. 首先讲一下Java是如何在运行时 ...

  6. 如何配置MySQL

    解压绿色版mysql,并改名为mysql5.7 运行CMD(管理员版本,否则没有权限) 运行完后 然后就把地址改为你存放mysql5.7下的bin目录 对于新版mysql5.7没有了data目录,我们 ...

  7. C++学习书籍推荐《Effective C++ 第三版(英文)》下载

    百度云及其他网盘下载地址:点我 作者简介 Scott Meyers is one of the world's foremost authorities on C++, providing train ...

  8. 使用wincc vbs脚本查找进程及如何运行进程

    使用vbs代码查看某个进程是否在运行,本文要检查的进程名为 QRscan.exe,其代码如下: sub CheckProcess Dim WMI,Objs,Process,ObjSet WMI=Get ...

  9. Socket网络编程系列教程序

    C语言的用途相当多,可以用在数据结构.数据库.网络.嵌入式等方面,历经40多年不衰,真是厉害!最近一直想从某一应用方面写一个系列教程,好好地把某一方面讲深讲透.         正好博主对网络方面的编 ...

  10. centos7 linux下增加swap虚拟内存分区大小

    此方法不限于centos,linux均适用 最近在服务器上部署了一个java项目,java进程经常性莫名被自动Kill,首先java程序是没有报错的,那么我想可能是内存不足的原因,因为4G内存的服务上 ...