UVA 12165 Triangle Hazard
https://cn.vjudge.net/problem/UVA-12165
题目
给出D、E、F分BC,CA,AB的比$m_1:m_2$,$m_3:m_4$,$m_5:m_6$和PQR三点的坐标,求ABC三点的坐标
题解
利用梅涅劳斯定理,找出直线和三边的交点,然后每个边按顺序乘下去
可以写出三个方程
\[\frac{AR}{RP}\cdot\boxed{\frac{PQ}{QB}}\cdot\frac{BF}{FA}=1\]
\[\frac{BP}{PQ}\cdot\boxed{\frac{QR}{RC}}\cdot\frac{CD}{DB}=1\]
\[\frac{CQ}{QR}\cdot\boxed{\frac{RP}{PA}}\cdot\frac{AE}{EC}=1\]
然后得到
\[\frac{AR}{RP}\cdot\frac{PQ}{PQ+BP}=\frac{m5}{m6}=k_1\]
\[\frac{BP}{PQ}\cdot\frac{QR}{QR+RC}=\frac{m1}{m2}=k_2\]
\[\frac{CQ}{QR}\cdot\frac{RP}{RP+RA}=\frac{m3}{m4}=k_3\]
最后解
\[x_1=k_1(1+x_2)\]
\[x_2=k_2(1+x_3)\]
\[x_3=k_3(1+x_4)\]
然后点加向量就可以得出三点坐标
AC代码
#include<cstdio>
#include<cctype>
#include<cmath>
#define REP(r,x,y) for(register int r=(x); r<(y);r++)
#ifdef sahdsg
#define DBG(...) printf(__VA_ARGS__)
#else
#define DBG(...) (void)0
#endif
using namespace std; int _s; char _c;
template <class T>
inline void read(T&x) {
x=0;
do _c=getchar(); while(!isdigit(_c) && _c!='-');
_s=1;
if(_c=='-') _s=-1, _c=getchar();
while(isdigit(_c)) { x=x*10+_c-'0'; _c=getchar();} x*=_s;
}
template<class T, class...A> inline void read(T &x, A&...a){read(x); read(a...);} #define D point
#define CD const D
struct point {
double x,y;
void read() {scanf("%lf%lf",&x,&y);}
void prn() {printf("%.8lf %.8lf",x,y);}
};
D operator+(CD&l, CD&r) {return (D){l.x+r.x,l.y+r.y};}
D operator-(CD&l, CD&r) {return (D){l.x-r.x,l.y-r.y};}
D operator/(CD&l,double a) {return (D){l.x/a,l.y/a};}
D operator*(CD&l,double a) {return (D){l.x*a,l.y*a};}
D operator*(double a, CD &l) {return (D){l.x*a,l.y*a};}
double cross(CD&l, CD&r) {return l.x*r.y-l.y*r.x;}
D intersec(CD&a, D b, CD&c, D d) {
b=b-a; d=d-c; D u=a-c;
double t = cross(d, u) / cross(b,d);
return a+b*t;
}
#undef CD
#undef D
point P,Q,R,A,B,C;
#define x1 nvdsaokvl
#define x2 nvkjdavnf
#define x3 vmasdvddz
int m1,m2,m3,m4,m5,m6;
double k1,k2,k3,x1,x2,x3;
int main() {
int N; read(N);
while(0<N--) {
P.read(); Q.read(); R.read();
read(m1,m2,m3,m4,m5,m6);
k1=(double)m5/m6, k2=(double)m1/m2, k3=(double)m3/m4;
double t=1-k1*k2*k3;
x1=(k1+k1*k2*k3+k1*k2)/t;
x2=(k2+k1*k2*k3+k2*k3)/t;
x3=(k3+k1*k2*k3+k1*k3)/t;
DBG("%lf %lf %lf\n", x1,x2,x3);
A=x1*(R-P)+R;
B=x2*(P-Q)+P;
C=x3*(Q-R)+Q;
A.prn();putchar(' ');
B.prn();putchar(' ');
C.prn();putchar('\n');
}
return 0;
}
UVA 12165 Triangle Hazard的更多相关文章
- uva 11401 Triangle Counting
// uva 11401 Triangle Counting // // 题目大意: // // 求n范围内,任意选三个不同的数,能组成三角形的个数 // // 解题方法: // // 我们设三角巷的 ...
- UVa 488 - Triangle Wave
https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=94&page=s ...
- UVa 11437:Triangle Fun(计算几何综合应用,求直线交点,向量运算,求三角形面积)
Problem ATriangle Fun Input: Standard Input Output: Standard Output In the picture below you can see ...
- UVA 11401 - Triangle CountingTriangle Counting 数学
You are given n rods of length 1,2, . . . , n. You have to pick any 3 of them and build a triangle. ...
- UVA 488 - Triangle Wave 水~
http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&p ...
- UVA 11437 - Triangle Fun 向量几何
http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&p ...
- 简单几何(求交点) UVA 11437 Triangle Fun
题目传送门 题意:三角形三等分点连线组成的三角形面积 分析:入门题,先求三等分点,再求交点,最后求面积.还可以用梅涅劳斯定理来做 /********************************** ...
- uva 11437 - Triangle Fun
计算几何: 直线交点: #include<cstdio> using namespace std; struct node { double x,y; node(,):x(x),y(y){ ...
- 【递推】【组合计数】UVA - 11401 - Triangle Counting
http://blog.csdn.net/highacm/article/details/8629173 题目大意:计算从1,2,3,...,n中选出3个不同的整数,使得以它们为边长可以构成三角形的个 ...
随机推荐
- centos安装go环境
centos安装go环境 1,下载合适的go安装包 https://studygolang.com/dl 2 上传到 centos服务器的 /usr/local下然后解压 3.设置go的环境变量 ...
- (转)利用Auto ARIMA构建高性能时间序列模型(附Python和R代码)
转自: 原文标题:Build High Performance Time Series Models using Auto ARIMA in Python and R 作者:AISHWARYA SI ...
- MySQL 字符串分隔成行&子串统计
利用help_topic表把字符串转换成行(分隔符号',') ),) as `id` FROM mysql.`help_topic`; 统计字符串每个子串出现次数(分隔符号',') ),) AS `s ...
- Python 函数和类
python作为一个面向对象的语言,也有类似java等面向对象语言相同的数据结构(class)的定义,和代码块数据结构定义"函数".为了极大可能的简化代码调用逻辑和书写规则,pyt ...
- 坚果云+typora(个人十分喜欢的一个记笔记方式)
1.名称 坚果云 markdown--->typora 2.喜欢原因 2.1 坚果云 坚果云全平台覆盖,支持Windows.Mac.Linux.iOS(iPad及iPhone).Android. ...
- 1.1 菜单管理 ——MyRapid WinForm快速开发框架-功能介绍
菜单表数据库设计 可以根据数据表取得树状目录,其中 版本和作者 可以分别对版本和修改人进行追溯 有兴趣的朋友可以尝试再添加一个收藏夹 也是比较常用的功能 这里我没有做这个功能 然后看下菜单编辑 ...
- tensorflow 性能调优相关
如何进行优化tensorflow 将极大得加速机器学习模型的训练的时间,下面是一下tensorflow性能调优相关的阅读链接: tensorflow 性能调优:http://d0evi1.com/te ...
- kubernetes搭建(可访问外网环境部署)
版权声明:本文为博主原创文章,支持原创,转载请附上原文出处链接和本声明. 本文链接地址:https://www.cnblogs.com/wannengachao/p/11947621.html 一.前 ...
- November 24th, Week 48th, Sunday, 2019
Once you replace negative thoughts with positive ones, you will start having positive results. 淘汰消极思 ...
- [CodeForces-1225B] TV Subscriptions 【贪心】【尺取法】
[CodeForces-1225B] TV Subscriptions [贪心][尺取法] 标签: 题解 codeforces题解 尺取法 题目描述 Time limit 2000 ms Memory ...