经ooo提醒咕题解会掉rp

  我反正也冒着改不完题的风险,就开始颓博了

  话说好久没这么舒坦的垫过底了233

  

  上来一看T1,立刻就转化题意为有奇偶性和距离限制的bfs

  然后就没考虑子串不能越过母串边界的事,当成单调队列裸题做了..

  由于能力有限,连单调队列都调了很久

  大样例过不去,还坚信是大样例错了

  最后发现自己伪了,结果心态直接爆炸

  觉得自己这场完了,甚至没有再考虑一下T1能拿57的$n^2$暴力

  三道题都打了指数暴力+一些无脑qj

  T1指数还挂了233

  

  怎么说呢,算上昨天的内存爆炸,我这两天可以说是相当的没状态

  也许是对自己的期望过高了

  而且看见没思路的题就容易炸心态

  害怕调暴力浪费时间,其实是好高鹜远想直接拿100(然而这次这种策略失败了

  暴力该打还是要打的,至少能拿>40分的暴力值得一打

  如果正解没思路则必须打,可能会成为想到正解的灵感啥的,可以稳住心态和节省对拍暴力

  我这么劝自己都劝了多少次了

  

  T1 Reverse

    注意子串只能是母串的一部分

    所以bfs时会受到两种限制

    set保证复杂度

  T2 Silhouette

    神仙的容斥原理。

    考虑将两个限制排序,从大到小计算。

    为什么是从大往小,因为题目限制了最大值,所以每行每列后续可以无限制地放置较小的数,但不能放置更大的数

    也就是说先计算的不会受到后计算的限制

    

    发现排序后面临这样一个子问题:给定一个区域,保证其每行每列的最大值都为一个定值S的方案数

    发现这个区域一定是矩形和L形

    考虑一个$a*b$的矩形,我们要求出$g(0)=恰好有0行的最大值达不到S的方案数$

    考虑容斥,设$f(i)=至少有i行的最大值达不到S的方案数$

    由于按行容斥,我们必须保证每一列必须合法

    对于这个矩形,每一列又是等效的

    $f(i)=\sum \limits_{i=0}^a C_{a}^i * (S^i * ((S+1)^{a-i} - S^{a-i} ))^b$

    组合数的意义是钦定哪些行一定不合法,由于可以选0,S的i次幂表示这一列的那i行一定不能选到S,S+1的次幂表示可以选到S

    那么$(S+1)^i - S^i$表示这一列至少选到了一个S,由此保证了此列一定合法

    又因为保证了有i行选不到S,剩下的行不确定,所以保证了至少i行不合法。

    则$g(0)=\sum\limits_{k=0}^a (-1)^k * f(k)$

    为什么不是$g(0)=f(0)-f(1)$?

    考虑计算$f$时,你乘上的系数$C_a^i$

    这代表你的f是 钦定一个大小为i的集合的行不合法,其余乱选不确定和不合法 的方案和

    每个集合被平等地计算,那么对于一个$j$行不合法的方案数$(j>i)$,他在这个f里被计算了$C_j^i$次

    我们要使所有大于0的$j$都被计算0次,观察在每个i里被计算的次数

    $  i  time(eg:3)$

    $  0  C_3^0 = 1  $

    $  1  C_3^1 = 3  $

    $  2  C_3^2 = 3  $

    $  3  C_3^3 = 1  $

    $(-1)^k$的系数是不是比较显然

    用二项式定理也挺好证明的

    
    考虑拓展到L形,L形的特点就是伸出去的两条线所在的行/列的lim一定大于此时的S

    也就是:那些行/列在之前已经被满足,不必强迫他们必须选到S

    所以我们容斥时,只需要枚举交集部分矩形的行数(只有他们可能非法),而计算横向伸出去的方案数时也不必保证此列选到S,所以柿子成了

    $f(i)=\sum\limits_{i=0}^a C_a^i * (S^i*((S+1)^{a+c-i}-S^{a+c-i}))^b * (S^i * (S+1)^{a-i})^d$

    设交集部分为a行b列,向上伸出c行,向右伸出d列

    然后这题就没了,由于每一行只会被枚举到一次,快速幂需要log,总复杂度$nlogn$

  T3 QWQ

    鸽鸽鸽鸽鸽鸽鸽鸽鸽

CSPS模拟 59的更多相关文章

  1. 反省——关于csp-s模拟50

    本人于搜索csp-s模拟49题解时,有意识地点开了一篇关于csp-s模拟50T2的题解,并知道了题解是二维前缀和以及四维偏序. 更重要的是,那篇博客说有解法二,叫二维莫队. 于是我上网搜索二维莫队,结 ...

  2. csp-s模拟测试99

    csp-s模拟测试99 九九归一直接爆炸. $T1$一眼板子. $T2$一眼语文题(语文的唯一一次$120+$是给模拟出来的可知我的语文能力). $T3$一眼普及题. ?? Hours Later 板 ...

  3. csp-s模拟测试98

    csp-s模拟测试98 $T1$??不是我吹我轻松手玩20*20.$T2$装鸭好像挺可做?$T3$性质数据挺多提示很明显? $One$ $Hour$ $Later$ 这$T1$什么傻逼题真$jb$难调 ...

  4. csp-s模拟测试97

    csp-s模拟测试97 猿型毕露.水题一眼秒,火题切不动,还是太菜了. $T1$看了一会儿感觉$woc$期望题$T1??$假的吧??. $T2$秒. $T3$什么玩意儿. 40 01:24:46 00 ...

  5. csp-s模拟测试96

    csp-s模拟测试96 $T1$一眼慢速乘,$T2$稍证一手最优性尝试用神奇数据结构优化,无果,弃.$T3$暴力+信仰. 100 03:16:38 95 03:16:56 35 03:17:10 23 ...

  6. csp-s模拟测试95

    csp-s模拟测试95 去世场祭. $T1$:这不裸的除法分块吗. $T2$:这不裸的数据结构优化$Dp$吗. $T3$:这不裸的我什么都不会搜索骗$30$分吗. 几分钟后. 这除法分块太劲了..(你 ...

  7. csp-s模拟测试94

    csp-s模拟测试94 一场简单题,打爆了.$T1$脑抽分解质因数准备分子分母消,想了半天发现$jb$互质直接上天,果断码了高精滚蛋.$T2$无脑手玩大样例,突然灵光一闪想到映射到前$K$大小的区间, ...

  8. csp-s模拟测试93

    csp-s模拟测试93 自闭场. $T1$想到$CDQ$,因为复杂度少看见一个$0$打了半年还用了$sort$直接废掉,$T2$,$T3$直接自闭暴力分都没有.考场太慌了,心态不好. 02:07:34 ...

  9. csp-s模拟测试92

    csp-s模拟测试92 关于$T1$:最短路这一定建边最短路. 关于$T2$:傻逼$Dp$这一定线段树优化$Dp$. 关于$T3$:最小生成树+树P+换跟一定是这样. 深入(?)思考$T1$:我是傻逼 ...

随机推荐

  1. ELK 学习笔记之 elasticsearch Mget操作

    Mget操作: 查询多个文档: curl -XGET 'http://192.168.1.151:9200/_mget' -d '{"docs": [{"_index&q ...

  2. 确认自己所用的python版本

    总结: 目前有两个版本的python处于活跃状态:python2,python3 有多种流行的python运行环境:cpython(应用最广泛的python解释器,如无对解释器有要求,一般用这个,默认 ...

  3. RMAN详细教程(二):备份、检查、维护、恢复

    RMAN详细教程(一):基本命令代码 一.创建增量备份 增量备份级别为0-4,但为方便备份管理,oracle建议只限于0级和1级. 1.差异增量备份(differential incremental ...

  4. 本人亲测-SSM整合后的基础包(供新手学习使用,可在本基础上进行二次开发)

    本案例是在eclipse上进行开发的,解压后直接添加到eclipse即可.还需要自己配置maven环境.链接:https://pan.baidu.com/s/1siuvhCJASuZG_jqY5utP ...

  5. 面试官,不要再问我“Java GC垃圾回收机制”了

    Java GC垃圾回收几乎是面试必问的JVM问题之一,本篇文章带领大家了解Java GC的底层原理,图文并茂,突破学习及面试瓶颈. 楔子-JVM内存结构补充 在上篇<JVM之内存结构详解> ...

  6. 快速入门Maven(二)(Eclipse构建Maven项目)

    Mars2的eclipse()已经集成了Maven插件,所以用这个版本不需要装插件了. 接下来构建: 一.调整Eclipse设置 1.选择3.3.9版本的maven软件 2.修改默认的本地仓库地址 二 ...

  7. Jenkins介绍

    持续集成: 持续集成是一种软件开发实践,即团队开发成员经常集成他们的工作,通过每个成员每天至少集成一次,也就意味着每天可能会发生多次集成.每次集成都通过自动化的构建(包括编译,发布,自动化测试)来验证 ...

  8. 浅谈celery的坑

    celery celery的使用以及在Django中的配置,不详细介绍,主要记录在Django中使用的坑点. 坑点 时区问题 celery默认的时区是世界标准时间,比东八区慢了8个小时,如果发布定时任 ...

  9. 某PHP发卡系统SQL注入

    源码出自:https://www.0766city.com/yuanma/11217.html 安装好是这样的 审计 发现一处疑似注入的文件 地址:/other/submit.php 看到这个有个带入 ...

  10. DNS原理及解析过程详解

    相信大家在平时工作中都离不开DNS解析,DNS解析是互联网访问的第一步,无论是使用笔记本浏览器访问网络还是打开手机APP的时候,访问网络资源的第一步必然要经过DNS解析流程.下面我们将详细的给大家讲解 ...