Zeppelin版本0.6.2

1. Export SPARK_HOME

In conf/zeppelin-env.sh, export SPARK_HOME environment variable with your Spark installation path.

You can optionally export HADOOP_CONF_DIR and SPARK_SUBMIT_OPTIONS

export SPARK_HOME=/usr/crh/4.9.2.5-/spark
export HADOOP_CONF_DIR=/etc/hadoop/conf
export JAVA_HOME=/opt/jdk1..0_79

这儿虽然添加了SPARK_HOME但是后面使用的时候还是找不到包。

2. Set master in Interpreter menu

After start Zeppelin, go to Interpreter menu and edit master property in your Spark interpreter setting. The value may vary depending on your Spark cluster deployment type.

spark解释器设置为yarn-client模式

FAQ

1.

ERROR [2016-07-26 16:46:15,999] ({pool-2-thread-2} Job.java[run]:189) - Job failed
java.lang.NoSuchMethodError: scala.reflect.api.JavaUniverse.runtimeMirror(Ljava/lang/ClassLoader;)Lscala/reflect/api/JavaMirrors$JavaMirror;
at org.apache.spark.repl.SparkILoop.<init>(SparkILoop.scala:936)
at org.apache.spark.repl.SparkILoop.<init>(SparkILoop.scala:70)
at org.apache.zeppelin.spark.SparkInterpreter.open(SparkInterpreter.java:765)
at org.apache.zeppelin.interpreter.LazyOpenInterpreter.open(LazyOpenInterpreter.java:69)
at org.apache.zeppelin.interpreter.LazyOpenInterpreter.interpret(LazyOpenInterpreter.java:93)
at org.apache.zeppelin.interpreter.remote.RemoteInterpreterServer$InterpretJob.jobRun(RemoteInterpreterServer.java:341)
at org.apache.zeppelin.scheduler.Job.run(Job.java:176)
at org.apache.zeppelin.scheduler.FIFOScheduler$1.run(FIFOScheduler.java:139)
at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:471)
at java.util.concurrent.FutureTask.run(FutureTask.java:262)
at java.util.concurrent.ScheduledThreadPoolExecutor$ScheduledFutureTask.access$201(ScheduledThreadPoolExecutor.java:178)
at java.util.concurrent.ScheduledThreadPoolExecutor$ScheduledFutureTask.run(ScheduledThreadPoolExecutor.java:292)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
at java.lang.Thread.run(Thread.java:745)

Solution

把SPARK_HOME/lib目录下的所有jar包都拷到zeppelin的lib下。

2.

%spark.sql
show tables

org.apache.hadoop.ipc.RemoteException(org.apache.hadoop.security.AccessControlException): Permission denied: user=root, access=WRITE, inode="/user/root/.sparkStaging/application_1481857320971_0028":hdfs:hdfs:drwxr-xr-x
at org.apache.hadoop.hdfs.server.namenode.FSPermissionChecker.check(FSPermissionChecker.java:319)
at org.apache.hadoop.hdfs.server.namenode.FSPermissionChecker.check(FSPermissionChecker.java:292)
at org.apache.hadoop.hdfs.server.namenode.FSPermissionChecker.checkPermission(FSPermissionChecker.java:213)
at org.apache.hadoop.hdfs.server.namenode.FSPermissionChecker.checkPermission(FSPermissionChecker.java:190)
at org.apache.hadoop.hdfs.server.namenode.FSDirectory.checkPermission(FSDirectory.java:1771)
at org.apache.hadoop.hdfs.server.namenode.FSDirectory.checkPermission(FSDirectory.java:1755)
at org.apache.hadoop.hdfs.server.namenode.FSDirectory.checkAncestorAccess(FSDirectory.java:1738)
at org.apache.hadoop.hdfs.server.namenode.FSDirMkdirOp.mkdirs(FSDirMkdirOp.java:71)
at org.apache.hadoop.hdfs.server.namenode.FSNamesystem.mkdirs(FSNamesystem.java:3905)
at org.apache.hadoop.hdfs.server.namenode.NameNodeRpcServer.mkdirs(NameNodeRpcServer.java:1048)
at org.apache.hadoop.hdfs.protocolPB.ClientNamenodeProtocolServerSideTranslatorPB.mkdirs(ClientNamenodeProtocolServerSideTranslatorPB.java:622)
at org.apache.hadoop.hdfs.protocol.proto.ClientNamenodeProtocolProtos$ClientNamenodeProtocol$2.callBlockingMethod(ClientNamenodeProtocolProtos.java)
at org.apache.hadoop.ipc.ProtobufRpcEngine$Server$ProtoBufRpcInvoker.call(ProtobufRpcEngine.java:616)
at org.apache.hadoop.ipc.RPC$Server.call(RPC.java:969)
at org.apache.hadoop.ipc.Server$Handler$1.run(Server.java:2151)
at org.apache.hadoop.ipc.Server$Handler$1.run(Server.java:2147)
at java.security.AccessController.doPrivileged(Native Method)
at javax.security.auth.Subject.doAs(Subject.java:415)
at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1657)
at org.apache.hadoop.ipc.Server$Handler.run(Server.java:2145) at org.apache.hadoop.ipc.Client.call(Client.java:1427)
at org.apache.hadoop.ipc.Client.call(Client.java:1358)
at org.apache.hadoop.ipc.ProtobufRpcEngine$Invoker.invoke(ProtobufRpcEngine.java:229)
at com.sun.proxy.$Proxy24.mkdirs(Unknown Source)
at org.apache.hadoop.hdfs.protocolPB.ClientNamenodeProtocolTranslatorPB.mkdirs(ClientNamenodeProtocolTranslatorPB.java:558)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:606)
at org.apache.hadoop.io.retry.RetryInvocationHandler.invokeMethod(RetryInvocationHandler.java:252)
at org.apache.hadoop.io.retry.RetryInvocationHandler.invoke(RetryInvocationHandler.java:104)
at com.sun.proxy.$Proxy25.mkdirs(Unknown Source)
at org.apache.hadoop.hdfs.DFSClient.primitiveMkdir(DFSClient.java:3018)
at org.apache.hadoop.hdfs.DFSClient.mkdirs(DFSClient.java:2988)
at org.apache.hadoop.hdfs.DistributedFileSystem$21.doCall(DistributedFileSystem.java:1057)
at org.apache.hadoop.hdfs.DistributedFileSystem$21.doCall(DistributedFileSystem.java:1053)
at org.apache.hadoop.fs.FileSystemLinkResolver.resolve(FileSystemLinkResolver.java:81)
at org.apache.hadoop.hdfs.DistributedFileSystem.mkdirsInternal(DistributedFileSystem.java:1053)
at org.apache.hadoop.hdfs.DistributedFileSystem.mkdirs(DistributedFileSystem.java:1046)
at org.apache.hadoop.fs.FileSystem.mkdirs(FileSystem.java:1877)
at org.apache.hadoop.fs.FileSystem.mkdirs(FileSystem.java:598)
at org.apache.spark.deploy.yarn.Client.prepareLocalResources(Client.scala:281)
at org.apache.spark.deploy.yarn.Client.createContainerLaunchContext(Client.scala:634)
at org.apache.spark.deploy.yarn.Client.submitApplication(Client.scala:123)
at org.apache.spark.scheduler.cluster.YarnClientSchedulerBackend.start(YarnClientSchedulerBackend.scala:57)
at org.apache.spark.scheduler.TaskSchedulerImpl.start(TaskSchedulerImpl.scala:144)
at org.apache.spark.SparkContext.<init>(SparkContext.scala:523)
at org.apache.zeppelin.spark.SparkInterpreter.createSparkContext(SparkInterpreter.java:339)
at org.apache.zeppelin.spark.SparkInterpreter.getSparkContext(SparkInterpreter.java:145)
at org.apache.zeppelin.spark.SparkInterpreter.open(SparkInterpreter.java:465)
at org.apache.zeppelin.interpreter.ClassloaderInterpreter.open(ClassloaderInterpreter.java:74)
at org.apache.zeppelin.interpreter.LazyOpenInterpreter.open(LazyOpenInterpreter.java:68)
at org.apache.zeppelin.interpreter.LazyOpenInterpreter.interpret(LazyOpenInterpreter.java:92)
at org.apache.zeppelin.interpreter.remote.RemoteInterpreterServer$InterpretJob.jobRun(RemoteInterpreterServer.java:300)
at org.apache.zeppelin.scheduler.Job.run(Job.java:169)
at org.apache.zeppelin.scheduler.FIFOScheduler$1.run(FIFOScheduler.java:134)
at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:471)
at java.util.concurrent.FutureTask.run(FutureTask.java:262)
at java.util.concurrent.ScheduledThreadPoolExecutor$ScheduledFutureTask.access$201(ScheduledThreadPoolExecutor.java:178)
at java.util.concurrent.ScheduledThreadPoolExecutor$ScheduledFutureTask.run(ScheduledThreadPoolExecutor.java:292)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
at java.lang.Thread.run(Thread.java:745)

Solution

hadoop fs -chown root:hdfs /user/root

3.

import org.apache.spark.rdd.RDD
import org.apache.spark.sql.{DataFrame, Row, SQLContext}
import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.ml.feature.RFormula
import org.apache.spark.ml.regression.LinearRegression
conf: org.apache.spark.SparkConf = org.apache.spark.SparkConf@6a79f5df
sc: org.apache.spark.SparkContext = org.apache.spark.SparkContext@59b2aabc
spark: org.apache.spark.sql.SQLContext = org.apache.spark.sql.SQLContext@129d0b9b
org.apache.spark.sql.AnalysisException: Specifying database name or other qualifiers are not allowed for temporary tables. If the table name has dots (.) in it, please quote the table name with backticks (`).;
at org.apache.spark.sql.catalyst.analysis.Catalog$class.checkTableIdentifier(Catalog.scala:)
at org.apache.spark.sql.catalyst.analysis.SimpleCatalog.checkTableIdentifier(Catalog.scala:)
at org.apache.spark.sql.catalyst.analysis.SimpleCatalog.lookupRelation(Catalog.scala:)
at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveRelations$.getTable(Analyzer.scala:)
at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveRelations$$anonfun$apply$.applyOrElse(Analyzer.scala:)
at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveRelations$$anonfun$apply$.applyOrElse(Analyzer.scala:)
at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan$$anonfun$resolveOperators$.apply(LogicalPlan.scala:)
at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan$$anonfun$resolveOperators$.apply(LogicalPlan.scala:)
at org.apache.spark.sql.catalyst.trees.CurrentOrigin$.withOrigin(TreeNode.scala:)
at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.resolveOperators(LogicalPlan.scala:)
at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan$$anonfun$.apply(LogicalPlan.scala:)
at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan$$anonfun$.apply(LogicalPlan.scala:)
at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$.apply(TreeNode.scala:)
val dataset = spark.sql("select knife_dish_power,penetration,knife_dish_torque,total_propulsion,knife_dish_speed_readings,propulsion_speed1 from `tbm.tbm_test` where knife_dish_power!=0 and penetration!=0")

如上sql中给表名和库名添加``。

然后又报如下错:

import org.apache.spark.rdd.RDD
import org.apache.spark.sql.{DataFrame, Row, SQLContext}
import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.ml.feature.RFormula
import org.apache.spark.ml.regression.LinearRegression
conf: org.apache.spark.SparkConf = org.apache.spark.SparkConf@4dd69db0
sc: org.apache.spark.SparkContext = org.apache.spark.SparkContext@4072dd9
spark: org.apache.spark.sql.SQLContext = org.apache.spark.sql.SQLContext@238ac654
java.lang.RuntimeException: Table Not Found: tbm.tbm_test
at scala.sys.package$.error(package.scala:27)
at org.apache.spark.sql.catalyst.analysis.SimpleCatalog.lookupRelation(Catalog.scala:139)
at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveRelations$.getTable(Analyzer.scala:257)
at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveRelations$$anonfun$apply$7.applyOrElse(Analyzer.scala:268)

原因:我用的是org.apache.spark.sql.SQLContext对象spark查询hive中的数据,查询hive的数据需要org.apache.spark.sql.hive.HiveContext对象sqlContext或sqlc。

实例:

顺便记录一下spark-shell使用HiveContext:

集群环境是HDP2.3.4.0

spark版本是1.5.2

spark-shell
scala> val hiveContext = new org.apache.spark.sql.hive.HiveContext(sc)
scala> hiveContext.sql("show tables").collect().foreach(println)
[gps_p1,false]
scala> hiveContext.sql("select * from g").collect().foreach(println)
[1,li]
[1,li]
[1,li]
[1,li]
[1,li]

4.

import org.apache.spark.rdd.RDD
import org.apache.spark.sql.{DataFrame, Row, SQLContext}
import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.ml.feature.RFormula
import org.apache.spark.ml.regression.LinearRegression
conf: org.apache.spark.SparkConf = org.apache.spark.SparkConf@4d66e4f8
org.apache.spark.SparkException: Only one SparkContext may be running in this JVM (see SPARK-2243). To ignore this error, set spark.driver.allowMultipleContexts = true. The currently running SparkContext was created at:
org.apache.spark.SparkContext.<init>(SparkContext.scala:82)
$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:46)
$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:51)
$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:53)
$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:55)
$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:57)
$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:59)
$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:61)
$iwC$$iwC$$iwC$$iwC.<init>(<console>:63)
$iwC$$iwC$$iwC.<init>(<console>:65)
$iwC$$iwC.<init>(<console>:67)
$iwC.<init>(<console>:69)
<init>(<console>:71)
.<init>(<console>:75)
.<clinit>(<console>)
.<init>(<console>:7)
.<clinit>(<console>)
$print(<console>)

Solution:

val conf = new SparkConf().setAppName("test").set("spark.driver.allowMultipleContexts", "true")
val sc = new SparkContext(conf)
val spark = new SQLContext(sc)

在上面添加set("spark.driver.allowMultipleContexts", "true")。

Zeppelin 0.6.2使用Spark的yarn-client模式的更多相关文章

  1. Spark on YARN运行模式(图文详解)

    不多说,直接上干货! 请移步 Spark on YARN简介与运行wordcount(master.slave1和slave2)(博主推荐) Spark on YARN模式的安装(spark-1.6. ...

  2. Spark之Yarn提交模式

    一.Client模式 提交命令: ./spark-submit --master yarn --class org.apache.examples.SparkPi ../lib/spark-examp ...

  3. 大话Spark(2)-Spark on Yarn运行模式

    Spark On Yarn 有两种运行模式: Yarn - Cluster Yarn - Client 他们的主要区别是: Cluster: Spark的Driver在App Master主进程内运行 ...

  4. 解决Spark On Yarn yarn-cluster模式下的No Suitable Driver问题

    Spark版本:2.2.0_2.11 我们在项目中通过Spark SQL JDBC连接MySQL,在启动Driver/Executor执行的时候都碰到了这个问题.网上解决方案我们全部都试过了,奉上我们 ...

  5. yarn cluster和yarn client模式区别——yarn-cluster适用于生产环境,结果存HDFS;而yarn-client适用于交互和调试,也就是希望快速地看到application的输出

    Yarn-cluster VS Yarn-client 从广义上讲,yarn-cluster适用于生产环境:而yarn-client适用于交互和调试,也就是希望快速地看到application的输出. ...

  6. Spark(四十九):Spark On YARN启动流程源码分析(一)

    引导: 该篇章主要讲解执行spark-submit.sh提交到将任务提交给Yarn阶段代码分析. spark-submit的入口函数 一般提交一个spark作业的方式采用spark-submit来提交 ...

  7. Spark On YARN启动流程源码分析(一)

    本文主要参考: a. https://www.cnblogs.com/yy3b2007com/p/10934090.html 0. 说明 a. 关于spark源码会不定期的更新与补充 b. 对于spa ...

  8. Spark 1.0.0 横空出世 Spark on Yarn 部署(Hadoop 2.4)

    就在昨天,北京时间5月30日20点多.Spark 1.0.0最终公布了:Spark 1.0.0 released 依据官网描写叙述,Spark 1.0.0支持SQL编写:Spark SQL Progr ...

  9. Spark on YARN模式的安装(spark-1.6.1-bin-hadoop2.6.tgz + hadoop-2.6.0.tar.gz)(master、slave1和slave2)(博主推荐)

    说白了 Spark on YARN模式的安装,它是非常的简单,只需要下载编译好Spark安装包,在一台带有Hadoop YARN客户端的的机器上运行即可.  Spark on YARN简介与运行wor ...

随机推荐

  1. 活锁(livelock) 专题

    活锁(livelock) 活锁指的是任务或者执行者没有被阻塞,由于某些条件没有满足,导致一直重复尝试,失败,尝试,失败. 活锁和死锁的区别在于,处于活锁的实体是在不断的改变状态,所谓的“活”, 而处于 ...

  2. C# 实现系统关机、注销、重启、休眠、挂起

    原文:C# 实现系统关机.注销.重启.休眠.挂起 核心代码如下: using System; using System.Text; using System.Diagnostics; using Sy ...

  3. Android零基础入门第70节:ViewPager轻松完成TabHost效果

    上一期学习了ViewPager的简单使用,本期一起来学习ViewPager的更多用法. 相信很多同学都使用过今日头条APP吧,一打开主界面就可以看到顶部有很多Tab,然后通过左右滑动来切换,就可以通过 ...

  4. C++字符串的操作(简单全面)

    void *memccpy (void *dest, const void *src, int c, size_t n); 从src所指向的对象复制n个字符到dest所指向的对象中.如果复制过程中遇到 ...

  5. UISearchController 的大坑

         UISearchBar+UISearchDisplayController这个组合的稳定性经过几次iOS版本迭代肯定不言而喻,但苹果爸爸就是任性的在iOS8.0中宣布弃用UISearchDi ...

  6. Spring与IoC

    控制反转(IOC,Inversion of Control),是一个概念,是一种思想. 指将传统上由程序代码直接操控的对象调用权交给容器,通过容器来实现对象的装配和管理.控制反转就是对对象控制权的转移 ...

  7. java中的String、StringBuffer、StringBuilder的区别

    java中String.StringBuffer.StringBuilder是编程中经常使用的字符串类,他们之间的区别也是经常在面试中会问到的问题.现在总结一下,看看他们的不同与相同. 1.可变与不可 ...

  8. vue+element——父级元素fixed,遮罩会在上方

    前言 这种场景还是蛮场景的 一个共用的head组件,组件里面通常是当前系统登录账号名 退出登录 修改密码这样的弹框 但是现在我又想head不跟着main内容上下滑动.所以用了fixed 定位. 问题来 ...

  9. ElasticSearch搜索引擎的入门实战

    1.ElasticSearch简介 引用自百度百科: ElasticSearch是一个基于Lucene的搜索服务器.它提供了一个分布式多用户能力的全文搜索引擎,基于RESTful web接口.Elas ...

  10. 使用BurpSuite的Collaborator查找.Onion隐藏服务的真实IP地址

    本文转载!!! 原文地址:http://www.4hou.com/technology/10367.html 翻译来自:http://digitalforensicstips.com/2017/11/ ...