Canny 边缘检测算法


Steps:

  1. 高斯滤波平滑
  2. 计算梯度大小和方向
  3. 非极大值抑制
  4. 双阈值检测和连接

代码结构:

Canny Edge Detection
| Gaussian_Smoothing
| | convolution.py
| | | convolution()
| | gaussion_smoothing.py
| | | dnorm()
| | | gaussian_kernel()
| | | gaussian_blur()
| Sobel_Filter
| | sobel.py
| | | sobel_edge_detection()
| Canny.py
| | non_max_suppression()
| | threshold()
| | hysteresis()
| | main()

代码解读:


1. 高斯滤波平滑

  • 创建一个高斯核(kernel_size=5):

  • 执行卷积和平均操作(以下均以 lenna 图为例)

2. 计算梯度大小和方向

水平方向和竖直方向


梯度图:

3. 非极大值抑制

4. 双阈值检测和连接


以下是代码:

import numpy as np
import cv2
import argparse from Computer_Vision.Canny_Edge_Detection.sobel import sobel_edge_detection
from Computer_Vision.Canny_Edge_Detection.gaussian_smoothing import gaussian_blur import matplotlib.pyplot as plt def non_max_suppression(gradient_magnitude, gradient_direction, verbose):
image_row, image_col = gradient_magnitude.shape output = np.zeros(gradient_magnitude.shape) PI = 180 for row in range(1, image_row - 1):
for col in range(1, image_col - 1):
direction = gradient_direction[row, col] if (0 <= direction < PI / 8) or (15 * PI / 8 <= direction <= 2 * PI):
before_pixel = gradient_magnitude[row, col - 1]
after_pixel = gradient_magnitude[row, col + 1] elif (PI / 8 <= direction < 3 * PI / 8) or (9 * PI / 8 <= direction < 11 * PI / 8):
before_pixel = gradient_magnitude[row + 1, col - 1]
after_pixel = gradient_magnitude[row - 1, col + 1] elif (3 * PI / 8 <= direction < 5 * PI / 8) or (11 * PI / 8 <= direction < 13 * PI / 8):
before_pixel = gradient_magnitude[row - 1, col]
after_pixel = gradient_magnitude[row + 1, col] else:
before_pixel = gradient_magnitude[row - 1, col - 1]
after_pixel = gradient_magnitude[row + 1, col + 1] if gradient_magnitude[row, col] >= before_pixel and gradient_magnitude[row, col] >= after_pixel:
output[row, col] = gradient_magnitude[row, col] if verbose:
plt.imshow(output, cmap='gray')
plt.title("Non Max Suppression")
plt.show() return output def threshold(image, low, high, weak, verbose=False):
output = np.zeros(image.shape) strong = 255 strong_row, strong_col = np.where(image >= high)
weak_row, weak_col = np.where((image <= high) & (image >= low)) output[strong_row, strong_col] = strong
output[weak_row, weak_col] = weak if verbose:
plt.imshow(output, cmap='gray')
plt.title("threshold")
plt.show() return output def hysteresis(image, weak):
image_row, image_col = image.shape top_to_bottom = image.copy() for row in range(1, image_row):
for col in range(1, image_col):
if top_to_bottom[row, col] == weak:
if top_to_bottom[row, col + 1] == 255 or top_to_bottom[row, col - 1] == 255 or top_to_bottom[row - 1, col] == 255 or top_to_bottom[
row + 1, col] == 255 or top_to_bottom[
row - 1, col - 1] == 255 or top_to_bottom[row + 1, col - 1] == 255 or top_to_bottom[row - 1, col + 1] == 255 or top_to_bottom[
row + 1, col + 1] == 255:
top_to_bottom[row, col] = 255
else:
top_to_bottom[row, col] = 0 bottom_to_top = image.copy() for row in range(image_row - 1, 0, -1):
for col in range(image_col - 1, 0, -1):
if bottom_to_top[row, col] == weak:
if bottom_to_top[row, col + 1] == 255 or bottom_to_top[row, col - 1] == 255 or bottom_to_top[row - 1, col] == 255 or bottom_to_top[
row + 1, col] == 255 or bottom_to_top[
row - 1, col - 1] == 255 or bottom_to_top[row + 1, col - 1] == 255 or bottom_to_top[row - 1, col + 1] == 255 or bottom_to_top[
row + 1, col + 1] == 255:
bottom_to_top[row, col] = 255
else:
bottom_to_top[row, col] = 0 right_to_left = image.copy() for row in range(1, image_row):
for col in range(image_col - 1, 0, -1):
if right_to_left[row, col] == weak:
if right_to_left[row, col + 1] == 255 or right_to_left[row, col - 1] == 255 or right_to_left[row - 1, col] == 255 or right_to_left[
row + 1, col] == 255 or right_to_left[
row - 1, col - 1] == 255 or right_to_left[row + 1, col - 1] == 255 or right_to_left[row - 1, col + 1] == 255 or right_to_left[
row + 1, col + 1] == 255:
right_to_left[row, col] = 255
else:
right_to_left[row, col] = 0 left_to_right = image.copy() for row in range(image_row - 1, 0, -1):
for col in range(1, image_col):
if left_to_right[row, col] == weak:
if left_to_right[row, col + 1] == 255 or left_to_right[row, col - 1] == 255 or left_to_right[row - 1, col] == 255 or left_to_right[
row + 1, col] == 255 or left_to_right[
row - 1, col - 1] == 255 or left_to_right[row + 1, col - 1] == 255 or left_to_right[row - 1, col + 1] == 255 or left_to_right[
row + 1, col + 1] == 255:
left_to_right[row, col] = 255
else:
left_to_right[row, col] = 0 final_image = top_to_bottom + bottom_to_top + right_to_left + left_to_right final_image[final_image > 255] = 255 return final_image if __name__ == '__main__':
ap = argparse.ArgumentParser()
ap.add_argument("-i", "--image", required=True, help="Path to the image")
ap.add_argument("-v", "--verbose", type=bool, default=False, help="Path to the image")
args = vars(ap.parse_args()) image = cv2.imread(args["image"]) blurred_image = gaussian_blur(image, kernel_size=9, verbose=False) edge_filter = np.array([[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]]) gradient_magnitude, gradient_direction = sobel_edge_detection(blurred_image, edge_filter, convert_to_degree=True, verbose=args["verbose"]) new_image = non_max_suppression(gradient_magnitude, gradient_direction, verbose=args["verbose"]) weak = 50 new_image = threshold(new_image, 5, 20, weak=weak, verbose=args["verbose"]) new_image = hysteresis(new_image, weak) plt.imshow(new_image, cmap='gray')
plt.title("Canny Edge Detector")
plt.show()

References

hahahha

【数字图像分析】基于Python实现 Canny Edge Detection(Canny 边缘检测算法)的更多相关文章

  1. 猜数字游戏--基于python

    """题目:练习使用python写一个猜数字的游戏,数字范围0-100,每次猜错,需要给出缩小后的范围,每个人只有10次的猜测机会,猜测机会用完游戏结束!"&q ...

  2. 【笔记】基于Python的数字图像处理

    [博客导航] [Python相关] 前言 基于Python的数字图像处理,离不开相关处理的第三方库函数.搜索网络资源,列出如下资源链接. Python图像处理库到底用哪家 python计算机视觉编程— ...

  3. Image Processing and Analysis_8_Edge Detection:Scale-space and edge detection using anisotropic diffusion——1990

    此主要讨论图像处理与分析.虽然计算机视觉部分的有些内容比如特 征提取等也可以归结到图像分析中来,但鉴于它们与计算机视觉的紧密联系,以 及它们的出处,没有把它们纳入到图像处理与分析中来.同样,这里面也有 ...

  4. Image Processing and Analysis_8_Edge Detection:A Computational Approach to Edge Detection——1986

    此主要讨论图像处理与分析.虽然计算机视觉部分的有些内容比如特 征提取等也可以归结到图像分析中来,但鉴于它们与计算机视觉的紧密联系,以 及它们的出处,没有把它们纳入到图像处理与分析中来.同样,这里面也有 ...

  5. Image Processing and Analysis_8_Edge Detection:Theory of Edge Detection ——1980

    此主要讨论图像处理与分析.虽然计算机视觉部分的有些内容比如特 征提取等也可以归结到图像分析中来,但鉴于它们与计算机视觉的紧密联系,以 及它们的出处,没有把它们纳入到图像处理与分析中来.同样,这里面也有 ...

  6. 计算机视觉中的边缘检测Edge Detection in Computer Vision

    计算机视觉中的边缘检测   边缘检测是计算机视觉中最重要的概念之一.这是一个很直观的概念,在一个图像上运行图像检测应该只输出边缘,与素描比较相似.我的目标不仅是清晰地解释边缘检测是怎样工作的,同时也提 ...

  7. Image Processing and Analysis_8_Edge Detection:Edge Detection Revisited ——2004

    此主要讨论图像处理与分析.虽然计算机视觉部分的有些内容比如特 征提取等也可以归结到图像分析中来,但鉴于它们与计算机视觉的紧密联系,以 及它们的出处,没有把它们纳入到图像处理与分析中来.同样,这里面也有 ...

  8. Image Processing and Analysis_8_Edge Detection:Local Scale Control for Edge Detection and Blur Estimation——1998

    此主要讨论图像处理与分析.虽然计算机视觉部分的有些内容比如特 征提取等也可以归结到图像分析中来,但鉴于它们与计算机视觉的紧密联系,以 及它们的出处,没有把它们纳入到图像处理与分析中来.同样,这里面也有 ...

  9. Image Processing and Analysis_8_Edge Detection: Optimal edge detection in two-dimensional images ——1996

    此主要讨论图像处理与分析.虽然计算机视觉部分的有些内容比如特 征提取等也可以归结到图像分析中来,但鉴于它们与计算机视觉的紧密联系,以 及它们的出处,没有把它们纳入到图像处理与分析中来.同样,这里面也有 ...

随机推荐

  1. day96_11_28 mongoDB与scrapy框架

    一.mongodb mongodb是一个面向文档的数据库,而不是关系型数据库.不采用关系型是为了获得更好的扩展性. 它与mysql的区别在于它没有表连接,但是可以通过其他办法实现. 安装数据库. 上官 ...

  2. 【使用篇二】SpringBoot整合SpringDataJPA(18)

    一.pom.xml添加依赖 <dependencies> <!--web--> <dependency> <groupId>org.springfram ...

  3. 用 Python 图像识别打造一个小狗分类器

    ​ 项目介绍 小狗分类器可以做什么? 通过这个分类器,你只需要上传照片,就可以得到小狗的品种,以及更多的信息. 这就是所谓的「机器学习」,让机器自己去“学习”.我们今天要做的这个分类任务,是一个“监督 ...

  4. Vue 路由导航解析流程

    Vue Router完整的导航解析流程

  5. DBCC TRACEON - 跟踪标志 (Transact-SQL)

    跟踪标志用于设置特定服务器特征或更改特定行为. 例如,跟踪标志 3226 是一种常用的启动跟踪标志,可取消显示错误日志中的成功备份消息. 跟踪标志经常用于诊断性能问题或调试存储过程或复杂的计算机系统, ...

  6. Elasticsearch索引按月划分以及获取所有索引数据

    项目中数据库根据月份水平划分,由于没有用数据库中间件,没办法一下查询所有订单信息,所有用Elasticsearch做订单检索. Elasticsearch索引和数据库分片同步,也是根据月份来建立索引. ...

  7. Web安全测试学习笔记-DVWA-存储型XSS

    XSS(Cross-Site Scripting)大致分为反射型和存储型两种,之前对XSS的认知仅停留在如果网站输入框没有屏蔽类似<script>alert('ok')</scrip ...

  8. PHP 将远程文件写入到pdf或者word

    /** * 下载 */public function download($ids = null){ //一些条件参数啥的 $data = []; //获取文件 $res = curl_post(url ...

  9. 01-Java类加载机制详解

    类的加载过程 在使用java命令运行主类(main)的时候,首先要通过类加载器将类加载到JVM内存中去.主类在运行过程中如果用到其他的类就会逐步加载这些类.jar包里的类并不是一次性加载的,是使用的时 ...

  10. Git错误:error:failed to push some refs to 'git@gitee.com:name/project.git'

    大家在通过本地仓库上传文件到远程仓库时,会报出 error:failed to push some refs to 'git@gitee.com:name/project.git' 的错误. 解决方法 ...