HDU-3727 Jewel
Initially, there is no bead at all, that is, there is an empty chain. Jimmy always sticks the new bead to the right of the chain, to make the chain longer and longer. We number the leftmost bead as Position 1, and the bead to its right as Position 2, and so on. Jimmy usually asks questions about the beads' positions, size ranks and actual sizes. Specifically speaking, there are 4 kinds of operations you should process:
Insert x
Put a bead with size x to the right of the chain (0 < x < 231, and x is different from all the sizes of beads currently in the chain)
Query_1 s t k
Query the k-th smallest bead between position s and t, inclusive. You can assume 1 <= s <= t <= L, (L is the length of the current chain), and 1 <= k <= min (100, t-s+1)
Query_2 x
Query the rank of the bead with size x, if we sort all the current beads by ascent order of sizes. The result should between 1 and L (L is the length of the current chain)
Query_3 k
Query the size of the k-th smallest bead currently (1 <= k <= L, L is the length of the current chain)
InputThere are several test cases in the input. The first line for each test case is an integer N, indicating the number of operations. Then N lines follow, each line contains one operation, as described above.
You can assume the amount of "Insert" operation is no more than 100000, and the amounts of "Query_1", "Query_2" and "Query_3" are all less than 35000.
There are several test cases in the input. The first line for each test case is an integer N, indicating the number of operations. Then N lines follow, each line contains one operation, as described above.
You can assume the amount of "Insert" operation is no more than 100000, and the amounts of "Query_1", "Query_2" and "Query_3" are all less than 35000.Query the rank of the bead with size x, if we sort all the current beads by ascent order of sizes. The result should between 1 and L (L is the length of the current chain)
Query_3 k
Query the size of the k-th smallest bead currently (1 <= k <= L, L is the length of the current chain)
OutputOutput 4 lines for each test case. The first line is "Case T:", where T is the id of the case. The next 3 lines indicate the sum of results for Query_1, Query_2 and Query_3, respectively.
Sample Input
10
Insert 1
Insert 4
Insert 2
Insert 5
Insert 6
Query_1 1 5 5
Query_1 2 3 2
Query_2 4
Query_3 3
Query_3 1
Sample Output
Case 1:
10
3
5
Hint
The answers for the 5 queries are 6, 4, 3, 4, 1, respectively.
题解:可持续化线段树的模板题
AC代码为:
/*
有四种操作
1、在序列最优插入一个数字(该数字从没出现过)
2、询问序列内某区间第k小值
3、询问当前序列内数字x是第几小的(x一定在序列中)
4、询问当前序列内第k小的值
*/
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<vector>
using namespace std;
typedef long long LL;
const int N = 1e5 + 10;
int tot,rt[N];
char s[10];
vector<int> v;
struct data
{
int id;
int l,r,x;
}data[N*2];
inline int getid(int x) {return lower_bound(v.begin(),v.end(),x) - v.begin() + 1;}
void input(int n)
{
char s[10];
int x;
for(int i=0;i<n;i++)
{
scanf("%s",s);
if(s[0]=='I')
{
scanf("%d",&x);
data[i].id = 0;
data[i].x = x;
v.push_back(x);
}
else if(s[6]=='1')
{
int a,b,c;
scanf("%d%d%d",&a,&b,&c);
data[i].id = 1;
data[i].l = a, data[i].r = b, data[i].x = c;
}
else if(s[6]=='2')
{
scanf("%d",&x);
data[i].id = 2;
data[i].x = x;
}
else
{
scanf("%d",&x);
data[i].id = 3;
data[i].x = x;
}
}
}
struct node
{
int l,r,sum;
}tree[N*24];
inline void build(int l,int r,int &x) //1~v.size()
{
x = ++tot;
tree[x].sum = 0;
if(l==r) return;
int m = (l+r) >> 1;
build(l,m,tree[x].l);
build(m+1,r,tree[x].r);
}
inline void update(int l,int r,int &x,int y,int k)
{
tree[++tot] = tree[y], tree[tot].sum++,x=tot;
if(l==r) return;
int m = (l+r) >> 1;
if(k<=m) update(l,m,tree[x].l,tree[y].l,k);
else update(m+1,r,tree[x].r,tree[y].r,k);
}
inline int query1(int l,int r,int y,int x,int k) //查找区间第k小的数
{
if(l==r) return l;
int mid = (l+r) >> 1;
int sum = tree[tree[x].l].sum - tree[tree[y].l].sum;
if(k<=sum) return query1(l,mid,tree[y].l,tree[x].l,k);
else return query1(mid+1,r,tree[y].r,tree[x].r,k-sum);
}
inline int query2(int l,int r,int x,int k) //在当前序列中,输出X是第几小的数。
{
if(l==r) return 1;
int mid = (l+r) >> 1;
if(k<=mid) return query2(l,mid,tree[x].l,k);
else
{
int sum = tree[tree[x].l].sum;
return sum += query2(mid+1,r,tree[x].r,k);
}
}
inline int query3(int l,int r,int x,int k) //找到当前序列中第X小的数是几
{
if(l==r) return l;
int mid = (l+r) >> 1;
int sum = tree[tree[x].l].sum;
if(sum>=k) return query3(l,mid,tree[x].l,k);
else return query3(mid+1,r,tree[x].r,k-sum);
}
int main()
{
ios::sync_with_stdio(0);
cin.tie(0);
int n;
int cas = 1;
while(~scanf("%d",&n))
{
v.clear();
tot = 0;
LL ans1 = 0, ans2 = 0, ans3 = 0;
input(n);
sort(v.begin(),v.end());
v.erase(unique(v.begin(),v.end()),v.end());
int cnt = v.size();
build(1,cnt,rt[0]);
int now = 1;
for(int i=0;i<n;i++)
{
if(data[i].id==0)
{
update(1,cnt,rt[now],rt[now-1],getid(data[i].x));
now++;
}
else if(data[i].id==1)
{
int l = data[i].l, r = data[i].r, x = data[i].x;
ans1 += v[query1(1,cnt,rt[l-1],rt[r],x)-1];
}
else if(data[i].id==2) ans2+=query2(1,cnt,rt[now-1],getid(data[i].x));
else ans3+=v[query3(1,cnt,rt[now-1],data[i].x)-1];
}
printf("Case %d:\n%I64d\n%I64d\n%I64d\n",cas++,ans1,ans2,ans3);
}
return 0;
}
HDU-3727 Jewel的更多相关文章
- hdu 3727 Jewel (可持久化线段树+bit)
链接: http://acm.hdu.edu.cn/showproblem.php?pid=3727 题意: 对一段序列进行四种操作: Insert x :在序列尾部插入一个x: Query_1 s ...
- HDU 3727 Jewel 可持久化线段树
Jewel Problem Description Jimmy wants to make a special necklace for his girlfriend. He bought man ...
- HDU 3727 Jewel 主席树
题意: 一开始有一个空序列,然后有下面四种操作: Insert x在序列尾部加入一个值为\(x\)的元素,而且保证序列中每个元素都互不相同. Query_1 s t k查询区间\([s,t]\)中第\ ...
- 【HDOJ】3727 Jewel
静态区间第K大值.主席树和划分树都可解. /* 3727 */ #include <iostream> #include <sstream> #include <stri ...
- HDOJ 2111. Saving HDU 贪心 结构体排序
Saving HDU Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total ...
- 【HDU 3037】Saving Beans Lucas定理模板
http://acm.hdu.edu.cn/showproblem.php?pid=3037 Lucas定理模板. 现在才写,noip滚粗前兆QAQ #include<cstdio> #i ...
- hdu 4859 海岸线 Bestcoder Round 1
http://acm.hdu.edu.cn/showproblem.php?pid=4859 题目大意: 在一个矩形周围都是海,这个矩形中有陆地,深海和浅海.浅海是可以填成陆地的. 求最多有多少条方格 ...
- HDU 4569 Special equations(取模)
Special equations Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u S ...
- HDU 4006The kth great number(K大数 +小顶堆)
The kth great number Time Limit:1000MS Memory Limit:65768KB 64bit IO Format:%I64d & %I64 ...
- HDU 1796How many integers can you find(容斥原理)
How many integers can you find Time Limit:5000MS Memory Limit:32768KB 64bit IO Format:%I64d ...
随机推荐
- windows 2008 服务器优化:停powershell,卸载不相干软件,开启防火墙
windows 2008 作为 全录 的服务器,经常cpu达到100%,查看是powershell.exe占cpu有98%.影响 全录 软件进行电话录音.所以想禁止powershell.exe程序启动 ...
- ASP.NET Core 1.0: Using Entity Framework Core
伴随着ASP.NET Core 1.0发布的还有Entity Framework Core 1.0; 官方文档链接:https://docs.efproject.net/en/latest/platf ...
- __FILE__ basename() 作用
__FILE__ basename() 作用 __FILE__ 获取当前文件或文件夹的绝对路径 basename(__FILE__) 获取当前文件或文件夹的名称 basename(__FILE__, ...
- python 抓取youtube教程
前言: 相信大家很多人都看过youtube网站上的视频,网站上有很多的优质视频,清晰度也非常的高,看到喜欢的想要下载到本地,虽然也有很多方法,但是肯定没有python 来的快, 废话不多说,上代码: ...
- three.js使用卷积法实现物体描边效果
法线延展法 网上使用法线延展法实现物体描边效果的文章比较多,这里不再描述. 但是这种方法有个缺点:当两个面的法线夹角差别较大时,两个面的描边无法完美连接.如下图所示: 卷积法 这里使用另一种方法卷积法 ...
- Mac上安装并配置JDK
1,下载 点击 官网 ,进入下载界面, 同意协议内容 找到对应的Mac版本, 2,安装 安装下载下来的文件,期间会要求输入一次电脑密码,然后自动安装完. 如果显示文件已经损坏,打开 终端 输入 sud ...
- 小白学习React官方文档看不懂怎么办?
最近在上React课程的时候,发现好多同学不会看文档,所以在这里写一篇文章,希望能给同学们一点点启发. 我们首先打开React官方网站——https://react.docschina.org/doc ...
- salesforce lightning零基础学习(十五) 公用组件之 获取表字段的Picklist(多语言)
此篇参考:salesforce 零基础学习(六十二)获取sObject中类型为Picklist的field values(含record type) 我们在lightning中在前台会经常碰到获取pi ...
- RocketMQ一个新的消费组初次启动时从何处开始消费呢?
目录 1.抛出问题 1.1 环境准备 1.2 消息发送者代码 1.3 消费端验证代码 2.探究CONSUME_FROM_MAX_OFFSET实现原理 2.1 CONSUME_FROM_LAST_OFF ...
- 2019-11-6:ubuntu 18安装tomcat 9.0
1,下载tomcat,选择自己想要的版本下载即可 下载官网:http://tomcat.apache.org/ 2,将下载的源码放到自己需要的位置,解压,我新建了一个tomcat目录 sudo mkd ...