Pandas里面常用的一些数据分析函数总结
import pandas as pd
import numpy as np
pandas 有两个主要的数据结构:Series 和 DataFrame;
Series 是一个一维数组对象 ,它包含一组索引和一组数据,可以把它理解为一组带索引的数组。
DataFrame 是一个表格型的数据结构。它提供有序的列和不同类型的列值。
df:Pandas DataFrame对象
s: Pandas Series对象
数据导入:
pd.read_csv(filename):从csv文件中导入数据;
pd.read_table(filename):从限定分隔符的文本文件导入数据;
pd.read_excel(filename):从Excel文件导入数据;
pd.read_sql(query,connection_object):从SQL表/库中导入数据;
pd.read_json(json_string):从JSON格式的字符串导入数据;
pd.read_html(url):解析URLL,字符串或者HTML文件;
pd.read_clipboard():从粘贴板获取内容;
pd.DataFrame(dict):从字典对象导入数据;
数据导出:
df.to_csv(filename):导出数据到CSV文件;
df.excel(filename):导出数据到EXCEl文件;
df.to_sql(table_nname,connection_object):导出数据到SQL表;
df.json(filename):以json格式导出数据到文本文件;
创建对象:
pd.DataFrame(np.random.rand(20,5)):创建20行5列的随即数组成的DataFrame对象;
pd.Series(my_list):从可迭代对象my_list创建一个Series对象;
df.index = pd.date_range('1900/1/30',periods=df.shape[0]):增加一个日期索引;
index和reindex联合使用很有用处,index可作为索引并且元素乱排序之后,所以跟着元素保持不变,因此,当重排元素时,只需要对index进行才重排即可:reindex。
数据查看:
df.info():查看索引、数据类型和内存信息;
df.tail():查看DataFrame对象的最后n行;
df.shape():查看行数和列数;
df.head():查看DataFrame对象的前n行;
df.describe():查看数值型列的汇总统计;
s.value_counts(dropna=False):查看Series对象的唯一值和计数;
df.apply(pd.Seices.value_counts):查看DataFrame对象中每一列的唯一值和计数;
数据选取:
df[col]:根据列名,并以Series的形式返回列;
df[[col1, col2]]:以DataFrame形式返回多列;
s.iloc[0]:按位置选取数据;
s.loc['index_one']:按索引选取数据;
df.iloc[0,:]:返回第一行;
数据清洗:
df.columns = ['a','b','c']:重命名列名
pd.isnull():检查DataFrame对象中的空值,并返回一个Boolean数组;
pd.notnull():检查DataFrame对象中的非空值,并返回一个Boolean数组
df.dropna():删除所有包含空值的行;
df.fillna(x):用x替换DataFrame对象中所有的空值;
s.astype(float):将Series中的数据类型更改为float类型;
s.replace(1,'one'):用‘one’代替所有等于1的值
df.rename(columns=lambda x: x + 1):批量更改列名;
df.set_index('column_one'):更改索引列;
数据处理:
df[df[col] > 0.5]:选择col列的值大于0.5的行;
df.sort_values(col1):按照列col1排序数据,默认升序排列;
df.groupby(col):返回一个按列col进行分组的Groupby对象;
df.groupby(col1).agg(np.mean):返回按列col1分组的所有列的均值;
df.pivot_table(index=col1, values=[col2,col3], aggfunc=max):创建一个按列col1进行分组,并计算col2和col3的最大值的数据透视表;
data.apply(np.mean):对DataFrame中的每一列应用函数np.mean
数据合并:
df1.append(df2):将df2中的行添加到df1的尾部
df.concat([df1, df2],axis=1):将df2中的列添加到df1的尾部
df1.join(df2,on=col1,how='inner'):对df1的列和df2的列执行SQL形式的join
数据统计:
df.describe():查看数据值列的汇总统计;
df.mean():返回所有列的均值
df.corr():返回列与列之间的相关系数;
df.count():返回每一列中的非空值的个数;
df.max():返回每一列的最大值
df.min():返回每一列的最小值;
df.median():返回每一列的中位数;
df.std():返回每一列的标准
Pandas支持的数据类型:
int 整型
float 浮点型
bool 布尔类型
object 字符串类型
category 种类
datetime 时间类型
其他:
df.astypes: 数据格式转换
df.value_counts:相同数值的个数统计
df.hist(): 画直方图
df.get_dummies: one-hot编码,将类型格式的属性转换成矩阵型的属性。比如:三种颜色RGB,红色编码为[1 0 0];
后面会继续更新;
Pandas里面常用的一些数据分析函数总结的更多相关文章
- pandas学习(常用数学统计方法总结、读取或保存数据、缺省值和异常值处理)
pandas学习(常用数学统计方法总结.读取或保存数据.缺省值和异常值处理) 目录 常用数学统计方法总结 读取或保存数据 缺省值和异常值处理 常用数学统计方法总结 count 计算非NA值的数量 de ...
- python重要的第三方库pandas模块常用函数解析之DataFrame
pandas模块常用函数解析之DataFrame 关注公众号"轻松学编程"了解更多. 以下命令都是在浏览器中输入. cmd命令窗口输入:jupyter notebook 打开浏览器 ...
- pandas模块常用函数解析之Series(详解)
pandas模块常用函数解析之Series 关注公众号"轻松学编程"了解更多. 以下命令都是在浏览器中输入. cmd命令窗口输入:jupyter notebook 打开浏览器输入网 ...
- C#-正则,常用几种数据解析-端午快乐
在等待几个小时就是端午节了,这里预祝各位节日快乐. 这里分享的是几个在C#中常用的正则解析数据写法,其实就是Regex类,至于正则的匹配格式,请仔细阅读正则的api文档,此处不具体说明,谢谢. 开始吧 ...
- pandas学习(四)--数据的归一化
欢迎加入python学习交流群 667279387 Pandas学习(一)–数据的导入 pandas学习(二)–双色球数据分析 pandas学习(三)–NAB球员薪资分析 pandas学习(四)–数据 ...
- Pandas学习(一)——数据的导入
欢迎加入python学习交流群 667279387 学习笔记汇总 Pandas学习(一)–数据的导入 pandas学习(二)–双色球数据分析 pandas学习(三)–NAB球员薪资分析 pandas学 ...
- Pandas中查看列中数据的种类及个数
Pandas中查看列中数据的种类及个数 读取数据 import pandas as pd import numpy as np filepath = 'your_file_path.csv' data ...
- 利用 pandas库读取excel表格数据
利用 pandas库读取excel表格数据 初入IT行业,愿与大家一起学习,共同进步,有问题请指出!! 还在为数据读取而头疼呢,请看下方简洁介绍: 数据来源为国家统计局网站下载: 具体方法 代码: i ...
- pandas中常用的操作一
pandas中常用的功能: 1.显示所有的列的信息,999表示显示最大的列为999 pd.options.display.max_columns=999 2.读取excel时设置使用到列的名称,和列的 ...
随机推荐
- 130道ASP.NET面试题(一)
1 .简述 private,protected,public,internal修饰符的访问权限 答: private : 私有成员, 在类的内部才可以访问. protected : 保护成员,该类内部 ...
- Spring Security登录验证流程源码解析
一.登录认证基于过滤器链 Spring Security的登录验证流程核心就是过滤器链.当一个请求到达时按照过滤器链的顺序依次进行处理,通过所有过滤器链的验证,就可以访问API接口了. SpringS ...
- 领扣(LeetCode)交替位二进制数 个人题解
给定一个正整数,检查他是否为交替位二进制数:换句话说,就是他的二进制数相邻的两个位数永不相等. 示例 1: 输入: 5 输出: True 解释: 5的二进制数是: 101 示例 2: 输入: 7 输出 ...
- 使用不同的C++支持库的模块混合开发时,引发异常展开不正常,抛异常竟引出一个SIGSEGV
如果你使用gcc对一部分模块进行了GNUMake的编译,这些编译出动态库使用在Gradle编译框架下的项目.那么就有可能出现题目中的情况,使用不同的C++支持库的模块混合开发时,引发异常展开不正常. ...
- SpringBoot系列之i18n集成教程
目录 1.环境搭建 2.resource bundle资源配置 3.LocaleResolver类 4.I18n配置类 5.Thymeleaf集成 SpringBoot系统之i18n国际化语言集成教程 ...
- DNS简单配置
——主要执行的程序:/usr/sbin/named ——系统服务:named ——默认端口:53 ——运行时的虚拟根环境:/var/named/chroot ——主配置文件:/etc/named.co ...
- Ubuntu 16.04安装ROS Kinetic详细教程 | Tutorial to Install and Configure ROS Kinetic on Ubuntu 16.04
本文首发于个人博客https://kezunlin.me/post/e2780b93/,欢迎阅读! Tutorial to Install and Configure ROS Kinetic on U ...
- 迁移桌面程序到MS Store(12)——WPF使用UWP InkToolbar和InkCanvas
我们在<迁移桌面程序到MS Store(4)——桌面程序调用Win10 API>提到了对Win10 API的调用,但仍存在无法在WPF中使用UWP控件的问题,虽然都是XAML控件,但却是两 ...
- SCAU-1078 破密-数学的应用
另外一种方法和该题的题目在这位大佬的博客里 SCAU 1078 破密 还可以参考 https://blog.csdn.net/sinat_34200786/article/details/78 ...
- python CGI编程---Apache服务安装(2)
一.下载Apache 下载地址:https://www.apachehaus.com/cgi-bin/download.plx 我这里下载第一个,我电脑是window的64位. 下载完成后,解压到 我 ...