软分类:y 的取值只有正负两个离散值,例如 {0, 1}

硬分类:y 是正负两类区间中的连续值,例如 [0, 1]

一、感知机

主要思想:分错的样本数越少越好

用指示函数统计分错的样本数作为损失函数,不可微;

对错误分类样本,∑ -yi * f(xi) = ∑ -yi * WTxi  (因为求和项一定大于0,所以损失函数越小表示错误分类的样本越少)

二、线性判别分析

主要思想:同一类别的样本方差足够小,不同类别之间分散开(类内小,类间大)

Rayleigh quotient 和 generalized Rayleigh quotient

函数 R(A, x) = xHAx / xHx ,其中 A 是 Hermitan矩阵,如果是实矩阵则满足 AT = A。

性质:λmin  <= R(A, x) <= λmax   ,即最大值为 A 的最大特征值、最小值为 A 的最小特征值

函数 R(A, B, x) = xHAx / xHBx ,其中 A、B 是 Hermitan矩阵,B 正定。

令 x = B-1/2x',由瑞利商性质可知,R(A, B, x) 的最大值是 B-1/2AB-1/2 (或者 B-1A)的最大特征值,最小值是其最小特征值

与 LDA 的关系:

二类:

  数据是 p 维,只有两个类别,经过 LDA 投影到投影到一条直线,投影直线为向量 w(只关心其方向,设为单位向量即可),样本点xi 在直线上的投影为zi = wTx,记类别 1 和类别 2 两个集合为c1、c2,对 p 维数据 x 两个集合的样本均值和方差分别为 μc1 、 μc2 、Sc1 、Sc2

  样本点投影到直线后有样本均值 zk拔 和样本方差 Sk

  LDA 目标函数的定义要让类内方差小类间方差大,则

  J(W) = (z1拔 - z2拔 )2 / (S1 + S2)  

     = wTc1 - μc2)(μc1 - μc2)Tw /  wT (Sc1 + Sc2) w

     = wT Sw /  wT Sw w

  这个目标函数的 argmax 可以对其求导后令导数为零,得到向量 w 正比于 Sw-1c1 - μc2)。也可以直接利用瑞利商的结论,最大值为 Sw-1Sb 的最大特征值,二分类时 Sw 的方向恒为 μc1 - μc2 (因为(μc1 - μc2)Tw 结果是 scalar),令 Sw  = λ (μc1 - μc2) ,代入 (Sw-1Sb)w = λw,得到 w = Sw-1c1 - μc2) 结果一样。

多类:  

  数据是 p 维,有 K 个类别,经过 LDA 投影到低维(q 维)平面,基为(w1,w2,...,wq),共同构成矩阵Wpxq

  J(W) = WSW / WT Sw W,类间方差 S= Σ Nj (μcj - μ)(μcj - μ)T ,for j = 1, 2, ..., K;类内方差 Sw =  Σ Σ (xi - μcj)(xi - μcj)T for j = 1, 2, ..., K  and every xi in ci

  为了应用瑞利商结论,分子分母都各自求主对角线元素乘积,J(W) = ∏ wiSwi / wiT Sw w,for i = 1, 2, ..., q 。目标函数的最大值为 Sw-1Sb 最大的q个特征值的乘积,W 就由这 q 个最大特征值对应的特征向量组成。

  注意降到的维度 q 最大为 K-1。(因为知道了前K-1个 μcj 后最后一个μcj 可以由前K-1个表示)

监督降维:根据以上分析,对 xi 就可以进行降维 zi = WTxi

分类:LDA 用来分类的思路,假设各个类别的数据符合各自的高斯分布,LDA 投影后用 MLE 计算各个类别的均值和方差,就得到了各个类别服从高斯的概率密度函数。对于一个新样本,将其投影后的向量代入各类的分布计算一下概率,最大的就是样本所属的类。

三、Logistic 回归

判别模型,直接用一个函数拟合,计算后验概率 P(y|x)。直接用 MLE 来估计参数 W / 用梯度下降优化求参数 W 。

为什么不能用均方误差作为logistic regression的损失函数?——均方误差不能准确衡量分类效果的好坏
如果用的话,考虑两种情况
1. label 是1,而 f(x) = 0,那其实现在距离目标很远,但是微分值却是0,
2. label是0,但是 f(x) =1,微分算出来也是0,也不对,原因就出在sigmoid函数求导之后会出现 f(x) * (1-f(x))。
所以,这并不符合实际,距离优化目标远的情况微分值却很小,用均方误差是很难优化到一个好的结果。
 
logistic regression 再如何改进?—— cascading logistic regression models  神经网络

看一下 logistic regression 和 linear regression 中的梯度:

sigmoid函数怎么来的?——高斯判别分析

四、高斯判别分析:

生成模型,不对条件概率 P(y | x) 直接建模,引入 P(y) 的先验分布。

根据贝叶斯定理(执果索因):P(y | x) = P(x | y)P(y) / P(x),也即 P(y=ck | xi) 正比于 P(x| y=ck) P(y=ck),分别对这两部分建模后,对于一个新样本计算P(y=c| xi),概率最大的ck 就是样本所属的类别。

以二分类为例,对先验 P(y=ck) 建模最直觉的想法就是遍历所有训练数据,计算 P(y=ck) = Nk / N 。这个结果其实也就来源于,假设 Y 服从参数为 p 的伯努利分布,通过 MLE 进行参数估计。

对似然 P(x | y=ck) 的估计呢?——对每个类别都假设 P(x | y=ck) 服从均值为 μk 、方差为 Σ的高斯分布就好了。

P(x | y=ck) = ∏ P(x| y=ck) ,for every xin c,MLE 估计所有的 μk 和 Σ

结果比较差,怎么改进? ——不同类别的高斯分布共享同一个 Σ,减少参数改善过拟合。

可以看出,高斯判别分析认为输入的各个维度特征之间存在相关性。

能不能和 sigmoid 函数联系起来?

先看一个后验概率表达式,把分子除下去就看到熟悉的 σ (z) 形式了,可以发现 sigmoid 函数的作用就是把 logit 压到 probability。

另一个结论:似然设为服从高斯分布,且不同类别的高斯分布共享方差矩阵的情况下,高斯判别分析:

那为什么不直接去找 W 和 b 呢? ——logistic regression

概率判别模型和概率生成模型的一点比较分析:

为什么 discriminative model 要比generative model的效果要好?—— 先验等假设限制了生成模型效果,但并不是所有情况下都更好。
因为generative model 做了一些假设,比如是高斯分布,伯努利分布,是不是朴素贝叶斯(假定不同维度是独立的)。
所以:
  1. 训练集比较小的时候,这些“脑补”反而可能会更有效,这时候discriminative model就会受数据的影响更大。
  2. 同理 generative model 对数据噪声也不太敏感。
  3. Priors and class-dependent probabilities(先验和似然)可以从不同的来源去估计。
 

五、朴素贝叶斯

服从条件独立性假设

后验概率最大化 等价于 期望风险最小化

线性分类 Linear Classification的更多相关文章

  1. 从损失函数优化角度:讨论“线性回归(linear regression)”与”线性分类(linear classification)“的联系与区别

    1. 主要观点 线性模型是线性回归和线性分类的基础 线性回归和线性分类模型的差异主要在于损失函数形式上,我们可以将其看做是线性模型在多维空间中“不同方向”和“不同位置”的两种表现形式 损失函数是一种优 ...

  2. 【cs231n】图像分类-Linear Classification线性分类

    [学习自CS231n课程] 转载请注明出处:http://www.cnblogs.com/GraceSkyer/p/8824876.html 之前介绍了图像分类问题.图像分类的任务,就是从已有的固定分 ...

  3. 1. cs231n k近邻和线性分类器 Image Classification

    第一节课大部分都是废话.第二节课的前面也都是废话. First classifier: Nearest Neighbor Classifier 在一定时间,我记住了输入的所有的图片.在再次输入一个图片 ...

  4. [Scikit-learn] 1.4 Support Vector Machines - Linear Classification

    Outline: 作为一种典型的应用升维的方法,内容比较多,自带体系,以李航的书为主,分篇学习. 函数间隔和几何间隔 最大间隔 凸最优化问题 凸二次规划问题 线性支持向量机和软间隔最大化 添加的约束很 ...

  5. 【cs231n】线性分类笔记

    前言 首先声明,以下内容绝大部分转自知乎智能单元,他们将官方学习笔记进行了很专业的翻译,在此我会直接copy他们翻译的笔记,有些地方会用红字写自己的笔记,本文只是作为自己的学习笔记.本文内容官网链接: ...

  6. CS231n课程笔记翻译3:线性分类笔记

    译者注:本文智能单元首发,译自斯坦福CS231n课程笔记Linear Classification Note,课程教师Andrej Karpathy授权翻译.本篇教程由杜客翻译完成,巩子嘉和堃堃进行校 ...

  7. [CS231n-CNN] Image classification and the data-driven approach, k-nearest neighbor, Linear classification I

    课程主页:http://cs231n.stanford.edu/ Task: Challenges: _________________________________________________ ...

  8. Android线性布局(Linear Layout)

    Android线性布局(Linear Layout) LinearLayout是一个view组(view group),其包含的所有子view都以一个方向排列,垂直或是水平方向.我们能够用androi ...

  9. FastReport.Net使用:[24]其他控件(邮政编码(Zip Code),网格文本(Cellular Text)以及线性刻度尺(Linear Gauge))

    邮政编码(Zip Code) Zip Code仅支持数字(0~9) Zip Code支持数据列绑定,表达式,文本等模式 可通过修改SegmentCount属性的值来确定Zip Code的位数. 数字右 ...

随机推荐

  1. HDU 5510:Bazinga(暴力KMP)

    http://acm.hdu.edu.cn/showproblem.php?pid=5510 Bazinga Problem Description   Ladies and gentlemen, p ...

  2. Don’t Repeat Yourself

    The Don’t Repeat Yourself (DRY) principle states that duplication in logic should be eliminated via ...

  3. 寻觅Azure上的Athena和BigQuery(一):落寞的ADLA

    AWS Athena和Google BigQuery都是亚马逊和谷歌各自云上的优秀产品,有着相当高的用户口碑.它们都属于无服务器交互式查询类型的服务,能够直接对位于云存储中的数据进行访问和查询,免去了 ...

  4. Java 技术交流群,微信群

    专注Java相关技术:SSM.Spring全家桶.微服务.MySQL.集群.dubbo.分布式.中间件.Linux.网络.多线程.Jenkins.Nexus.Docker.ELK等等! 由于微信群限制 ...

  5. Mysql CPU使用率长期100%的解决思路备忘

    最近一台服务器的CPU使用率长期保持在100%的状态,查看进程发现是Mysql服务导致的.于是搜索各方资料,终于成功解决问题.备忘以及分享一下,希望可以帮助各位新手朋友. (服务器运行环境是Windo ...

  6. Spark 中 RDD的运行机制

    1. RDD 的设计与运行原理 Spark 的核心是建立在统一的抽象 RDD 之上,基于 RDD 的转换和行动操作使得 Spark 的各个组件可以无缝进行集成,从而在同一个应用程序中完成大数据计算任务 ...

  7. Spring 核心技术(4)

    接上篇:Spring 核心技术(3) version 5.1.8.RELEASE 1.4.2 依赖关系及配置详情 如上一节所述,你可以将 bean 属性和构造函数参数定义为对其他托管 bean(协作者 ...

  8. Java面向对象16种原则

    一   类的设计原则   1 依赖倒置原则-Dependency Inversion Principle (DIP) 2 里氏替换原则-Liskov Substitution Principle (L ...

  9. java 第一章

    1.java四要素  public static void main 2.java 的历史 and soso 3.知道java的格式和要求 4.知道如何配置环境变量 5.java的编写:  a.大括号 ...

  10. spring的jdbcTemplate的使用

    转载:http://1358440610-qq-com.iteye.com/blog/1826816 一.首先配置JdbcTemplate: 要使用Jdbctemplate 对象来完成jdbc 操作. ...