【Flink】Flink基础之WordCount实例(Java与Scala版本)
简述
WordCount(单词计数)一直是大数据入门的经典案例,下面用java和scala实现Flink的WordCount代码;
采用IDEA + Maven + Flink 环境;文末附 pom 文件和相关技术点总结;
Java实现Flink批处理版本
import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.java.DataSet;
import org.apache.flink.api.java.ExecutionEnvironment;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.util.Collector;
public class WordCountBatchByJava {
public static void main(String[] args) throws Exception {
// 创建执行环境
ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
// 加载或创建源数据
DataSet<String> text = env.fromElements("this a book", "i love china", "i am chinese");
// 转化处理数据
DataSet<Tuple2<String, Integer>> ds = text.flatMap(new LineSplitter()).groupBy(0).sum(1);
// 输出数据到目的端
ds.print();
// 执行任务操作
// 由于是Batch操作,当DataSet调用print方法时,源码内部已经调用Excute方法,所以此处不再调用,如果调用会出现错误
//env.execute("Flink Batch Word Count By Java");
}
static class LineSplitter implements FlatMapFunction<String, Tuple2<String,Integer>> {
@Override
public void flatMap(String line, Collector<Tuple2<String, Integer>> collector) throws Exception {
for (String word:line.split(" ")) {
collector.collect(new Tuple2<>(word,1));
}
}
}
}
运行输出结果如下:
(a,1)
(am,1)
(love,1)
(china,1)
(this,1)
(i,2)
(book,1)
(chinese,1)
Java实现Flink流处理版本
import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.util.Collector;
public class WordCountStreamingByJava {
public static void main(String[] args) throws Exception {
// 创建执行环境
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
// 设置socket数据源
DataStreamSource<String> source = env.socketTextStream("192.168.1.111", 9999, "\n");
// 转化处理数据
DataStream<WordWithCount> dataStream = source.flatMap(new FlatMapFunction<String, WordWithCount>() {
@Override
public void flatMap(String line, Collector<WordWithCount> collector) throws Exception {
for (String word : line.split(" ")) {
collector.collect(new WordWithCount(word, 1));
}
}
}).keyBy("word")//以key分组统计
.timeWindow(Time.seconds(2),Time.seconds(2))//设置一个窗口函数,模拟数据流动
.sum("count");//计算时间窗口内的词语个数
// 输出数据到目的端
dataStream.print();
// 执行任务操作
env.execute("Flink Streaming Word Count By Java");
}
public static class WordWithCount{
public String word;
public int count;
public WordWithCount(){
}
public WordWithCount(String word, int count) {
this.word = word;
this.count = count;
}
@Override
public String toString() {
return "WordWithCount{" +
"word='" + word + '\'' +
", count=" + count +
'}';
}
}
}
启动一个shell窗口,联通9999端口,输入数据:
[root@spark111 flink-1.6.2]# nc -l 9999
山东 天津 北京 河北 河南 山东 上海 北京
山东 海南 青海 西藏 四川 海南
IDEA 输出结果如下:
4> WordWithCount{word='北京', count=2}
1> WordWithCount{word='上海', count=1}
5> WordWithCount{word='天津', count=1}
4> WordWithCount{word='河南', count=1}
7> WordWithCount{word='山东', count=2}
3> WordWithCount{word='河北', count=1}
------------------------为了区分前后时间窗口结果,手动加的这条线--------------------------
8> WordWithCount{word='海南', count=2}
8> WordWithCount{word='四川', count=1}
7> WordWithCount{word='山东', count=1}
1> WordWithCount{word='西藏', count=1}
5> WordWithCount{word='青海', count=1}
Scala实现Flink批处理版本
import org.apache.flink.api.scala._
import org.apache.flink.api.scala.ExecutionEnvironment
object WordCountBatchByScala {
def main(args: Array[String]): Unit = {
//获取执行环境
val env = ExecutionEnvironment.getExecutionEnvironment
//加载数据源
val source = env.fromElements("china is the best country","beijing is the capital of china")
//转化处理数据
val ds = source.flatMap(_.split(" ")).map((_,1)).groupBy(0).sum(1)
//输出至目的端
ds.print()
// 执行操作
// 由于是Batch操作,当DataSet调用print方法时,源码内部已经调用Excute方法,所以此处不再调用,如果调用会出现错误
//env.execute("Flink Batch Word Count By Scala")
}
}
运行结果如下:
(is,2)
(beijing,1)
(the,2)
(china,2)
(country,1)
(of,1)
(best,1)
(capital,1)
Scala实现Flink流处理版本
import org.apache.flink.streaming.api.scala._
import org.apache.flink.streaming.api.scala.StreamExecutionEnvironment
import org.apache.flink.streaming.api.windowing.time.Time
object WordCountStreamingByScala {
def main(args: Array[String]): Unit = {
//获取执行环境
val env = StreamExecutionEnvironment.getExecutionEnvironment
//加载或创建数据源
val source = env.socketTextStream("192.168.1.111",9999,'\n')
//转化处理数据
val dataStream = source.flatMap(_.split(" "))
.map((_,1))
.keyBy(0)
.timeWindow(Time.seconds(2),Time.seconds(2))
.sum(1)
//输出到目的端
dataStream.print()
//执行操作
env.execute("Flink Streaming Word Count By Scala")
}
}
启动shell窗口,开启9999端口通信,输入词语:
[root@spark111 flink-1.6.2]# nc -l 9999
time is passed what is the time?
time is nine time passed again
运行结果如下:
4> (what,1)
5> (time,1)
8> (is,2)
5> (time?,1)
8> (passed,1)
5> (the,1)
------------------------为了区分前后时间窗口结果,手动加的这条线--------------------------
8> (is,1)
5> (time,2)
8> (passed,1)
7> (nine,1)
6> (again,1)
POM文件
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>com.ssrs</groupId>
<artifactId>flinkdemo</artifactId>
<version>1.0</version>
<properties>
<maven.compiler.source>1.8</maven.compiler.source>
<maven.compiler.target>1.8</maven.compiler.target>
<encoding>UTF-8</encoding>
<scala.version>2.11.12</scala.version>
<scala.binary.version>2.11</scala.binary.version>
<hadoop.version>2.8.4</hadoop.version>
<flink.version>1.6.1</flink.version>
</properties>
<dependencies>
<dependency>
<groupId>org.scala-lang</groupId>
<artifactId>scala-library</artifactId>
<version>${scala.version}</version>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-java</artifactId>
<version>${flink.version}</version>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-streaming-java_${scala.binary.version}</artifactId>
<version>${flink.version}</version>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-scala_${scala.binary.version}</artifactId>
<version>${flink.version}</version>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-streaming-scala_${scala.binary.version}</artifactId>
<version>${flink.version}</version>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-table_${scala.binary.version}</artifactId>
<version>${flink.version}</version>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-clients_${scala.binary.version}</artifactId>
<version>${flink.version}</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-client</artifactId>
<version>${hadoop.version}</version>
</dependency>
</dependencies>
</project>
总结
flink处理任务流程如下:
① 获取执行环境 (Environment)
② 加载或者创建数据源(source)
③ 转化处理数据(transformation)
④ 输出目的端(sink)
⑤ 执行任务(execute)
在批处理中,如果输出目的端,执行的 print 命令(除此之外,还有count,collect方法),则执行任务Execute不需要调用(因为这些方法内部已经调用了Execute方法);如果调用,虽然也有正确结果,但是会有错误信息输出;错误如下:
Exception in thread "main" java.lang.RuntimeException: No new data sinks have been defined since the last execution. The last execution refers to the latest call to 'execute()', 'count()', 'collect()', or 'print()'.
at org.apache.flink.api.java.ExecutionEnvironment.createProgramPlan(ExecutionEnvironment.java:940)
at org.apache.flink.api.java.ExecutionEnvironment.createProgramPlan(ExecutionEnvironment.java:922)
at org.apache.flink.api.java.LocalEnvironment.execute(LocalEnvironment.java:85)
at com.ssrs.WordCountBatchByJava.main(WordCountBatchByJava.java:27)
如果批处理代码中,输出目的端调用writeAsCsv、writeAsText等其他方法,则后面需要调用Execute;
批处理获取执行环境用ExecutionEnvironment,流处理获取环境用StreamExecutionEnvironment
批处理后的数据是DataSet,流处理后的数据是DataStream.
【Flink】Flink基础之WordCount实例(Java与Scala版本)的更多相关文章
- 小记--------sparksql和DataFrame的小小案例java、scala版本
sparksql是spark中的一个模块,主要用于进行结构化数据的处理,他提供的最核心的编程抽象,就是DataFrame.同时,sparksql还可以作为分布式的sql查询引擎. 最最重要的功能就是从 ...
- hadoop记录-[Flink]Flink三种运行模式安装部署以及实现WordCount(转载)
[Flink]Flink三种运行模式安装部署以及实现WordCount 前言 Flink三种运行方式:Local.Standalone.On Yarn.成功部署后分别用Scala和Java实现word ...
- 【Flink】flink执行jar报错:java.io.IOException: Error opening the Input Split file 或者 java.io.FileNotFoundException
报错内容 flink执行jar时,报如下错误: org.apache.flink.client.program.ProgramInvocationException: Job failed. (Job ...
- Apache Flink 零基础入门(转)
这是一份很好的 Apache Flink 零基础入门教程. Apache Flink 零基础入门(一&二):基础概念解析 Apache Flink 零基础入门(三):开发环境搭建和应用的配置. ...
- Hadoop3 在eclipse中访问hadoop并运行WordCount实例
前言: 毕业两年了,之前的工作一直没有接触过大数据的东西,对hadoop等比较陌生,所以最近开始学习了.对于我这样第一次学的人,过程还是充满了很多疑惑和不解的,不过我采取的策略是还是先让环 ...
- 大数据计算引擎之Flink Flink CEP复杂事件编程
原文地址: 大数据计算引擎之Flink Flink CEP复杂事件编程 复杂事件编程(CEP)是一种基于流处理的技术,将系统数据看作不同类型的事件,通过分析事件之间的关系,建立不同的时事件系序列库,并 ...
- 【Java基础】4、java中的内部类
内部类的分类:常规内部类.静态内部类.私有内部类.局部内部类.匿名内部类. 实例1:常规内部类 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 2 ...
- Python实现MapReduce,wordcount实例,MapReduce实现两表的Join
Python实现MapReduce 下面使用mapreduce模式实现了一个简单的统计日志中单词出现次数的程序: from functools import reduce from multiproc ...
- WordCount by Java
WordCount by Java 软测第二周作业 该项目github地址如下: https://github.com/YuQiao0303/WordCount 一.概述 项目WordCount的需求 ...
随机推荐
- 推荐一款现代化的脚手架项目《hope-boot》
简介: > 一款现代化的脚手架项目.企业开发?接外包?赚外快?还是学习?这都能满足你,居家必备,值得拥有
- sublime设置 reindent 快捷键
设置快捷键 使用快捷键 cmd + shift + p 打开控制面板 输入 key 关键词 点击进入 Key Bindings -User 添加如下代码 { "keys": [&q ...
- Java基础(十二)lambda表达式
1.引入lambda表达式的重要性 lambda表达式是一个可传递的代码块,可以在以后执行一次或多次. 在前面的回调部分,有一个例子是,ActionListener类实现了TimePrinter接口并 ...
- django-表单之数据保存(七)
models.py class Student(models.Model): #字段映射,数据库中是male,female,后台显示的是男,女 choices={ ('male',"男&qu ...
- Swift UIViewController中的delegate方式传值
ios swift开发中有几种方式传值,看到简书上一篇不错的文章. 链接:http://www.jianshu.com/p/3e1173652996 一.通过segue进行传值 二.通过delegat ...
- egg 框架自动创建数据库表结构
// {app_root}/app.js module.exports = app => { app.beforeStart(async () => { // 从配置中心获取 MySQL ...
- 使用ASP.NET Core 3.x 构建 RESTful API - 2. 什么是RESTful API
1. 使用ASP.NET Core 3.x 构建 RESTful API - 1.准备工作 什么是REST REST一词最早是在2000年,由Roy Fielding在他的博士论文<Archit ...
- 程序员学点xx 之 Redis
程序员学点xx 之 Redis 概述 其实程序员也要和操作系统打交道, 比如最常见的,部署自己电脑上的开发环境. 当然有时某些牛人, 觉得运维或基础部门的同事不够给力, 亲自上手部署服务器或线上环境, ...
- 大数据之路week01--自学之面向对象java(static,this指针(初稿))
函数的重载 返回值不一样会报错 java中,如果自己定义了构造函数的话,它就不会给你默认一个无参函数 如果一个属性,只进行定义,不初始化,自动补0,如果是一个布尔属性,默认是false但是如果一个局部 ...
- C表达式中的汇编指令
C 表达式中的汇编指令 asm 为 gcc 中的关键字,asm 表达式为在 C代码中嵌套汇编指令,该表达式只是单纯的替换出汇编代码,并不对汇编代码的含义进行解析. asm 表达式有两种形式,第二种 a ...