Sharding-JDBC:单库分表的实现
剧情回顾
前面,我们一共学习了读写分离,垂直拆分,垂直拆分+读写分离。对应的文章分别如下:
通过上面的优化,已经能满足大部分的需求了。只有一种情况需要我们再次进行优化,那就是单表的数量急剧上升,超过了1千万以上,这个时候就要对表进行水平拆分了。
表的水平拆分是什么?
就是将一个表拆分成N个表,就像一块大石头,搬不动,然后切割成10块,这样就能搬的动了。原理是一样的。
除了能够分担数量的压力,同时也能分散读写请求的压力,当然这个得看你的分片算法了,合理的算法才能够让数据分配均匀并提升性能。
今天我们主要讲单库中进行表的拆分,也就是不分库,只分表。
既分库也分表的操作后面再讲,先来一幅图感受下未分表:
然后再来一张图感受下已分表:
从上图我们可以看出,user表由原来的一个被拆分成了4个,数据会均匀的分布在这3个表中,也就是原来的user=user0+user1+user2+user3。
分表配置
首先我们需要创建4个用户表,如下:
CREATE TABLE `user_0`(
id bigint(64) not null,
city varchar(20) not null,
name varchar(20) not null,
PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;
CREATE TABLE `user_1`(
id bigint(64) not null,
city varchar(20) not null,
name varchar(20) not null,
PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;
CREATE TABLE `user_2`(
id bigint(64) not null,
city varchar(20) not null,
name varchar(20) not null,
PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;
CREATE TABLE `user_3`(
id bigint(64) not null,
city varchar(20) not null,
name varchar(20) not null,
PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;
分表的数量你需要根据你的数据量也未来几年的增长来评估。
分表的规则配置:
spring.shardingsphere.datasource.names=master
# 数据源
spring.shardingsphere.datasource.master.type=com.alibaba.druid.pool.DruidDataSource
spring.shardingsphere.datasource.master.driver-class-name=com.mysql.jdbc.Driver
spring.shardingsphere.datasource.master.url=jdbc:mysql://localhost:3306/ds_0?characterEncoding=utf-8
spring.shardingsphere.datasource.master.username=root
spring.shardingsphere.datasource.master.password=123456
# 分表配置
spring.shardingsphere.sharding.tables.user.actual-data-nodes=master.user_${0..3}
# inline 表达式
spring.shardingsphere.sharding.tables.user.table-strategy.inline.sharding-column=id
spring.shardingsphere.sharding.tables.user.table-strategy.inline.algorithm-expression=user_${id.longValue() % 4}
- actual-data-nodes
配置分表信息,这边用的inline表达式,翻译过来就是master.user_0,master.user_1,master.user_2,master.user_3 - inline.sharding-column
分表的字段,这边用id分表 - inline.algorithm-expression
分表算法行表达式,需符合groovy语法,上面的配置就是用id进行取模分片
如果我们有更复杂的分片需求,可以自定义分片算法来实现:
# 自定义分表算法
spring.shardingsphere.sharding.tables.user.table-strategy.standard.sharding-column=id
spring.shardingsphere.sharding.tables.user.table-strategy.standard.precise-algorithm-class-name=com.cxytiandi.sharding.algorithm.MyPreciseShardingAlgorithm
算法类:
public class MyPreciseShardingAlgorithm implements PreciseShardingAlgorithm<Long> {
@Override
public String doSharding(Collection<String> availableTargetNames, PreciseShardingValue<Long> shardingValue) {
for (String tableName : availableTargetNames) {
if (tableName.endsWith(shardingValue.getValue() % 4 + "")) {
return tableName;
}
}
throw new IllegalArgumentException();
}
}
在doSharding方法中你可以根据参数shardingValue做一些处理,最终返回这条数据需要分片的表名称即可。
除了单列字段分片,还支持多字段分片,大家可以自己去看文档操作一下。
需要分表的进行配置,不需要分表的无需配置,数据库操作代码一行都不用改变。
如果我们要在单库分表的基础上,再做读写分离,同样很简单,只要多配置一个从数据源就可以了,配置如下:
spring.shardingsphere.datasource.names=master,slave
# 主数据源
spring.shardingsphere.datasource.master.type=com.alibaba.druid.pool.DruidDataSource
spring.shardingsphere.datasource.master.driver-class-name=com.mysql.jdbc.Driver
spring.shardingsphere.datasource.master.url=jdbc:mysql://localhost:3306/ds_0?characterEncoding=utf-8
spring.shardingsphere.datasource.master.username=root
spring.shardingsphere.datasource.master.password=123456
# 从数据源
spring.shardingsphere.datasource.slave.type=com.alibaba.druid.pool.DruidDataSource
spring.shardingsphere.datasource.slave.driver-class-name=com.mysql.jdbc.Driver
spring.shardingsphere.datasource.slave.url=jdbc:mysql://localhost:3306/ds_1?characterEncoding=utf-8
spring.shardingsphere.datasource.slave.username=root
spring.shardingsphere.datasource.slave.password=123456
# 分表配置
spring.shardingsphere.sharding.tables.user.actual-data-nodes=ds0.user_${0..3}
spring.shardingsphere.sharding.tables.user.table-strategy.inline.sharding-column=id
spring.shardingsphere.sharding.tables.user.table-strategy.inline.algorithm-expression=user_${id.longValue() % 4}
# 读写分离配置
spring.shardingsphere.sharding.master-slave-rules.ds0.master-data-source-name=master
spring.shardingsphere.sharding.master-slave-rules.ds0.slave-data-source-names=slave
最后
你会发现,到最后这种复杂的分表场景,用框架来解决会非常简单。至少比你自己通过字段去计算路由的表,去汇总查询这种形式要好的多。
源码参考:https://github.com/yinjihuan/sharding-jdbc
觉得不错的记得关注下哦,给个Star吧!
欢迎加入我的知识星球,一起交流技术,免费学习猿天地的课程(http://cxytiandi.com/course)
PS:目前星球中正在星主的带领下组队学习Spring Cloud,等你哦!
Sharding-JDBC:单库分表的实现的更多相关文章
- Sharding-JDBC实现水平拆分-单库分表
参考资料:猿天地 https://mp.weixin.qq.com/s/901rNhc4WhLCQ023zujRVQ 作者:尹吉欢 当单表的数量急剧上升,超过了1千万以上,这个时候就要对表进行水平 ...
- SpringBoot+Mybatis-Plus整合Sharding-JDBC5.1.1实现单库分表【全网最新】
一.前言 小编最近一直在研究关于分库分表的东西,前几天docker安装了mycat实现了分库分表,但是都在说mycat的bug很多.很多人还是倾向于shardingsphere,其实他是一个全家桶,有 ...
- mycat 单库分表
上次把mycat的读写分离搞定了,这次试下单库分表,顾名思义就是在一个库里把一个表拆分为多个 需要配置的配置文件为 schema.xml 配置内容如下 <!DOCTYPE mycat:schem ...
- springboot with appache sharding 3.1 单库分表
配置文件相关信息: #开发 server.port=7200 spring.application.name=BtspIsmpServiceOrderDev eureka.client.service ...
- Spring Boot中整合Sharding-JDBC单库分表示例
本文是Sharding-JDBC采用Spring Boot Starter方式配置第二篇,第一篇是读写分离讲解,请参考:<Spring Boot中整合Sharding-JDBC读写分离示例> ...
- mycat 单库分表实践
参考 https://blog.csdn.net/sq2006hjp/article/details/78732227 Mycat采用的水平拆分,不管是分库还是分表,都是水平拆分的.分库是指,把一个大 ...
- mycat使用之MySQL单库分表及均分数据
转载自 https://blog.csdn.net/smilefyx/article/details/72810531 1.首先在Mycat官网下载安装包,这里就以最新的1.6版本为例,下载地址为: ...
- MySQL多数据源笔记3-分库分表理论和各种中间件
一.使用中间件的好处 使用中间件对于主读写分离新增一个从数据库节点来说,可以不用修改代码,达到新增节点数据库而不影响到代码的修改.因为如果不用中间件,那么在代码中自己是先读写分离,如果新增节点, 你进 ...
- Sharding Sphere的分库分表
什么是 ShardingSphere? 1.一套开源的分布式数据库中间件解决方案 2.有三个产品:Sharding-JDBC 和 Sharding-Proxy 3.定位为关系型数据库中间件,合理在分布 ...
随机推荐
- golang.org 安装脚本
#!/usr/bin/env bash cd $GOPATH; #创建 $GOPATH/src/golang.org/x 目录 mkdir -p $GOPATH/src/golang.org/x; e ...
- 关于在Arduino下STM32编程——RTC函数解析
注意:相关RTC基础知识这里不提! 该库头文件引用: #include <RTClock.h> 该库所在Arduino位置: 初始化RTC相关时钟 Arduino版的库里初始化配置PW ...
- 第十六届浙江大学宁波理工学院程序设计大赛 D 雷顿女士与分队hard version(dp)
题意 链接:https://ac.nowcoder.com/acm/contest/2995/D来源:牛客网 卡特莉接到来自某程序设计竞赛集训队的邀请,来为他们进行分队规划. 现在集训队共有n名选手, ...
- jQuery入门和DOM对象
jQuery入门和DOM对象 1.开发准备 1. 下载的版本: jquery-3.3.1.min.js :压缩版,发布版84.8KB jquery-3.3.1.js :常规版,开发版265KB 2. ...
- 服务监控之 Spring Boot Admin.
一.概述 开始阅读这篇文章之前,建议先阅读下<SpringBoot 之Actuator>,该篇文章提到 Spring Boot Actuator 提供了对单个Spring Boot的监控 ...
- python中list的运算,操作及实例
在操作list的时候,经常用到对列表的操作运算,比如说,列表添加,删除操作,其实,这里面经常回遇到这样一个问题,就是列表的操作容易被混淆了. 有人做了一个总结,这个很清晰,我就不多做阐述了: 1.ap ...
- angularjs $scope与this的区别,controller as vm有何含义?
壹 ❀ 引 初学angularjs的同学对于$scope一定不会陌生,scope(作用域)是将view(视图)与model(模板)关联起来的桥梁,通过controller(控制器)对于model的数 ...
- SpringBoot:@Scope注解学习
概述 先通过注解的javadoc,可以了解到,@Scope在和@Component注解一起修饰在类上,作为类级别注解时,@Scope表示该类实例的范围,在和@Bean一起修饰在方法上,作为方法级别注解 ...
- queue队列基础讲解
前言 似乎这种对蒟蒻最重要的概念都搜不到,对巨佬来说也根本不必要提及. 导致我也不懂. Queue 意义 queue,队列,一种数据结构. 队列是一种操作受限制的线性表: 特点: 1.元素先进先出. ...
- ETCD:配置参数
原文地址:Configuration flags etcd通过配置文件,多命令行参数和环境变量进行配置, 可重用的配置文件是YAML文件,其名称和值由一个或多个下面描述的命令行标志组成.为了使用此文件 ...