CF1007B Pave the Parallelepiped 容斥原理
2 seconds
256 megabytes
standard input
standard output
You are given a rectangular parallelepiped with sides of positive integer lengths AA, BB and CC.
Find the number of different groups of three integers (aa, bb, cc) such that 1≤a≤b≤c1≤a≤b≤c and parallelepiped A×B×CA×B×C can be paved with parallelepipeds a×b×ca×b×c. Note, that all small parallelepipeds have to be rotated in the same direction.
For example, parallelepiped 1×5×61×5×6 can be divided into parallelepipeds 1×3×51×3×5, but can not be divided into parallelepipeds 1×2×31×2×3.
The first line contains a single integer tt (1≤t≤1051≤t≤105) — the number of test cases.
Each of the next tt lines contains three integers AA, BB and CC (1≤A,B,C≤1051≤A,B,C≤105) — the sizes of the parallelepiped.
For each test case, print the number of different groups of three points that satisfy all given conditions.
4
1 1 1
1 6 1
2 2 2
100 100 100
1
4
4
165
In the first test case, rectangular parallelepiped (1,1,1)(1,1,1) can be only divided into rectangular parallelepiped with sizes (1,1,1)(1,1,1).
In the second test case, rectangular parallelepiped (1,6,1)(1,6,1) can be divided into rectangular parallelepipeds with sizes (1,1,1)(1,1,1), (1,1,2)(1,1,2), (1,1,3)(1,1,3) and (1,1,6)(1,1,6).
In the third test case, rectangular parallelepiped (2,2,2)(2,2,2) can be divided into rectangular parallelepipeds with sizes (1,1,1)(1,1,1), (1,1,2)(1,1,2), (1,2,2)(1,2,2) and (2,2,2)(2,2,2).
这题目其实求的就是a的因子乘b的因子乘c的因子
所以重点是算出a,b,c的因子
但是中间会出现重复的情况,比如(1,1,2),(1,2,1)是同一种情况
所以我们还要用容斥原理去掉这种情况
情况分为四种:a,b重负的情况;a,c重复的情况;b,c重复的情况;a,b,c重复的情况
#include <map>
#include <set>
#include <stack>
#include <cmath>
#include <queue>
#include <cstdio>
#include <vector>
#include <string>
#include <cstring>
#include <iostream>
#include <algorithm>
#define A 0
#define B 1
#define C 2
#define AB 3
#define BC 4
#define AC 5
#define ABC 6
#define debug(a) cout << #a << " " << a << endl
using namespace std;
const int maxn = 1e5;
const int mod = 10000007;
typedef long long ll;
ll t, a, b, c, kt[5],p[10], nu[maxn+10], num[maxn+10];
ll gcd( ll a, ll b) {
return b==0?a:gcd(b,a%b);
}
map<ll,ll>mm;
vector<ll> va, vb, vc;
void init() { //预处理每个数因子的数量
for( ll i = 1; i <= maxn; i ++ ) {
for( ll j = i; j <= maxn; j +=i ) {
nu[j] ++;
}
}
va.push_back(A); va.push_back(AB);
va.push_back(AC); va.push_back(ABC); vb.push_back(B); vb.push_back(AB);
vb.push_back(BC); vb.push_back(ABC); vc.push_back(C); vc.push_back(AC);
vc.push_back(BC); vc.push_back(ABC);
} ll cal3( ll x) {
ll res = 0;
res += x + x*(x-1) + x*(x-1)*(x-2)/6;//三部分取相同,两部分取相同,三部分都不同
return res;
} ll cal2( ll x ) {
ll res = 0;
res += x + x*(x-1)/2;//两部分相同,两部分不同
return res;
}
int main() {
init();
cin >> t;
while(t--)
{
cin >> a >> b >> c;
ll ab = gcd(a,b), bc = gcd(b,c), ac = gcd(a,c);
ll abc = gcd(ab,c);
ll nABC = nu[abc];
ll nAB = nu[ab] - nABC, nBC = nu[bc] - nABC, nAC = nu[ac] - nABC;
ll nA = nu[a] - nAB - nAC - nABC, nB = nu[b] - nAB - nBC - nABC;
ll nC = nu[c] - nAC - nBC - nABC;
num[ABC] = nABC;
num[AB] = nAB, num[AC] = nAC, num[BC] = nBC;
num[A] = nA, num[B] = nB, num[C] = nC;
ll ans = 0;
mm.clear();
for( ll i = 0; i < va.size(); i ++ ) {
for( ll j = 0; j < vb.size(); j ++ ) {
for( ll k = 0; k < vc.size(); k ++ ) {
kt[0] = va[i], kt[1] = vb[j], kt[2] = vc[k];
sort( kt, kt+3 );
ll x = kt[0], y = kt[1], z = kt[2];
ll tmp = 0;
for( ll l = 0; l < 3; l ++ ) {
tmp=1ll*tmp*maxn+1ll*kt[l];
}
if( mm[tmp] ) continue;///打标记去重
mm[tmp] = 1;
if( x == y && y == z )
ans += cal3(num[x]);
else if( x == y )
ans += num[z]*cal2(num[x]);
else if( y == z )
ans += num[x]*cal2(num[y]);
else ans += num[x]*num[y]*num[z];
}
}
}
cout << ans << endl;
}
return 0;
}
CF1007B Pave the Parallelepiped 容斥原理的更多相关文章
- [CF1007B]Pave the Parallelepiped[组合计数+状态压缩]
题意 \(t\) 组询问,给你 \(A, B, C\) ,问有多少组三元组 \((a, b, c)\) 满足他们任意排列后有: \(a|A,\ b|B,\ c|C\) . \(A,B,C,t\leq ...
- codeforces 1007B Pave the Parallelepiped
codeforces 1007B Pave the Parallelepiped 题意 题解 代码 #include<bits/stdc++.h> using namespace std; ...
- CF1008D Pave the Parallelepiped
容斥原理 解法一: 其他容斥原理的题也可以用这种思想 先把$A$,$B$,$C$分解因数 一种很暴力的想法是,将这些因数分成若干个集合(画出韦恩图),然后对有序数组的三个数分别枚举其位于哪一个集合中 ...
- Pave the Parallelepiped CodeForces - 1007B (计数)
大意: 给定A,B,C, 求有多少个三元组$(a,b,c)$, 满足$a \le b \le c$, 且以若干个$(a,b,c)$为三边的长方体能填满边长(A,B,C)的长方体. 暴力枚举出$A,B, ...
- hdu4059 The Boss on Mars(差分+容斥原理)
题意: 求小于n (1 ≤ n ≤ 10^8)的数中,与n互质的数的四次方和. 知识点: 差分: 一阶差分: 设 则 为一阶差分. 二阶差分: n阶差分: 且可推出 性质: 1. ...
- hdu2848 Visible Trees (容斥原理)
题意: 给n*m个点(1 ≤ m, n ≤ 1e5),左下角的点为(1,1),右上角的点(n,m),一个人站在(0,0)看这些点.在一条直线上,只能看到最前面的一个点,后面的被档住看不到,求这个人能看 ...
- BZOJ2301: [HAOI2011]Problem b[莫比乌斯反演 容斥原理]【学习笔记】
2301: [HAOI2011]Problem b Time Limit: 50 Sec Memory Limit: 256 MBSubmit: 4032 Solved: 1817[Submit] ...
- BZOJ 2440: [中山市选2011]完全平方数 [容斥原理 莫比乌斯函数]
2440: [中山市选2011]完全平方数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 3028 Solved: 1460[Submit][Sta ...
- ACM/ICPC 之 中国剩余定理+容斥原理(HDU5768)
二进制枚举+容斥原理+中国剩余定理 #include<iostream> #include<cstring> #include<cstdio> #include&l ...
随机推荐
- 统计学习方法6—logistic回归和最大熵模型
目录 logistic回归和最大熵模型 1. logistic回归模型 1.1 logistic分布 1.2 二项logistic回归模型 1.3 模型参数估计 2. 最大熵模型 2.1 最大熵原理 ...
- Git 学习笔记之(一) 使用 git gui 从github上下载代码
背景: 目前一些开源代码均在 GitHub上管理的,包括自己写的代码也可以放在上面进行管理.但问题是,当你换一台电脑,想要将你自己放在 GitHub 上的代码工程下载下来的时候,会遇到各种问题,目前可 ...
- 夯实Java基础(十二)——异常处理
1.异常处理概述 在Java程序执行过程中, 总是会发生不被期望的事件, 阻止程序按照程序员预期正常运行, 这就是Java程序出现的异常. 异常处理是基于面向对象的一种运行错误处理机制,通过对异常问题 ...
- Java虚拟机详解(四)------垃圾收集器
上一篇博客我们介绍了Java虚拟机垃圾回收,介绍了几种常用的垃圾回收算法,包括标记-清除,标记整理,复制等,这些算法我们可以看做是内存回收的理论方法,那么在Java虚拟机中,由谁来具体实现这些方法呢? ...
- LR有的JMeter也有之一“参数化”
酝酿了几天,一直想写点JMeter的东西,算是对学习东西的一个整理.:) 恩,一直觉得自己领悟能力不强,别人写的东西总要看老半天也不懂.好吧!一惯的傻瓜的方式(大量的截图+参数说明)嘻嘻. 参数化:简 ...
- maven 打包并导出 lib 第三方jar
一. maven 导出lib 包 执行命令 mvn dependency:copy-dependencies -DoutputDirectory=target/lib 或者在 eclipse 中执行, ...
- 单元测试python unittest
记录自己学习单元测试框架的一篇博客 菜鸟的学习之路比较艰辛到处找资料一把辛酸泪啊 1.首先是创建一个类里面设计一些简单的函数方便写用例: 原谅我蹩脚的英文直接用拼音命名了 : 2.接着就是创建用例文件 ...
- Vue系列:滚动页面到指定位置实现
方法1:scrollTop 滚动到某位置 方法2:scrollTo,scrollBy,scroll滚动到某位置 方法3:scrollIntoView() 实现滚动到具体某元素 需注意,上述3种方法都不 ...
- org.apache.spark.logging类报错
一,1 在使用spark读取kafka数据时,当spark升级到2.0之后,出现如上问题:之前遇到了,当时在工程里面添加了org.apache.spark.Logging类,能够运行. 但是在后期使用 ...
- 100天搞定机器学习|Day19-20 加州理工学院公开课:机器学习与数据挖掘
前情回顾 机器学习100天|Day1数据预处理 100天搞定机器学习|Day2简单线性回归分析 100天搞定机器学习|Day3多元线性回归 100天搞定机器学习|Day4-6 逻辑回归 100天搞定机 ...