2019 Multi-University Training Contest 1
2019 Multi-University Training Contest 1
A. Blank
upsolved by F0_0H
题意 给序列染色,使得 \([l_i,r_i]\) 区间内恰出现 k 种颜色。
做法 DP,\(dp[i][x][y][z]\) 表示考虑前 \(i\) 个位置,剩下 3 种颜色最后出现的位置为 \(x,y,z\) 的方案数 \((i\geq x \geq y \geq z)\)
复盘 比赛开始就提出了这个做法,但很遗憾,过题效率太低,再加上觉得 \(O(n^4)\) 过不去,没有在比赛中写这题。
B. Operation
题意 一个序列,两种操作,1. append 元素 x 2. 查询区间内子集异或最大值。强制在线。
复盘
- 发觉如果查询可以离线,可以分治解决跨过mid的区间,\(O(nlogn + B^3q)\) 能解决问题。
- 在线就顶不住了。
做法 对于一个前缀 \(a[1],...a[r]\) build的线性基时,使得每一维基向量位置尽可能靠后,并记录它们的位置,即可解决右端点为 \(r\) 的查询。
D. Vacation
solved by sdcgvhgj 233min -1
题意 单行道上很多辆车在走,求最后一辆车过线时间。
做法1 堆维护两车合体的时间。
做法2 枚举最后一辆车过线的时候是和谁合体的。
做法3 每个车的时间位移图像是个凸壳,求这个凸壳。
复盘 选择了一种不太舒适的做法 3。
E. Path
solved by rdc 32min -1
题意 删掉权值最小的边,使得 \(1\) 到 \(n\) 最短路变长。
做法 留下可能出现在最短路上的边,做最小割即可。
复盘 数组开小 TLE 了一发,下次注意点。
F. Typewriter
upsolved by sdcgvhgj
题意 打印一个字符串,每次可以打印一个字符,也可以复制一段子串,求最小耗费。
做法
- 对于每个位置j,欲求最靠左的位置i,使得i+1到j是1到i的子串
- 对于每个j,i是递增的,所以对1到i建SAM,对于每个j,持续移动i直到满足条件
- 普通在SAM跑串匹配时每次要匹配一个字符,需要一直向上跳,直到可以转移到这个字符
- 但如果每次用这种方法判断是否满足条件会退化到n方
- 因为长度在缩短,所以跳之后可以保留位置
- 比赛时意识到应该是SAM,但是一直在想怎么建好SAM之后找到N条转移关系,然后GG了,还是对SAM理解不够
复盘
- 意识到应该复制极长的串。
- 提出了 SA + 二分 + RMQ 的方案,因复杂度否决了这个做法。
I. String
sdcgvhgj击中立柱,rdc跟进补射 171min -5
题意 求字典序极小子串,满足各字符出现次数限制条件。
做法 逐位考虑。
复盘 这题很不顺利,初始化GG+check不周。建议 sdcgchgj 提高代码复用率,一段逻辑要在多个地方执行时,写个函数,会舒适很多。
K. Function
rdc写一半逃跑了,sdcgvhgj补刀 298min -2
题意 这个公式长得很漂亮,不如我们TLE一下。
做法
- 按 \([i^{\frac{1}{3}}]\) 分类统计答案。
- \([i^{\frac{1}{3}}]=x\) 时对答案的贡献为 \(\sum_{i=x^3}^{(x+1)^3-1} gcd(x,i)\),根据辗转相除法,不难证明,此和式循环节为 \(x\)。
- 线性筛预处理 \(\sum_{i=1}^{n}gcd(i,n)\)
复盘
- rdc \(O(nlogn)\) 解体后,试图施展线性筛,又解体了,sdcgvhgj 中流砥柱!
- 求解 \(f(x)=\sum_{i=1}^{x}gcd(i,x)\) 真的是很经典的问题啊...... 在这种地方居然逡巡而不入。
L. Sequence
solved by rdc 188min -1
题意 给一个序列\(\{a_n\}\),有3种变换,第 \(k\) 种为 \(a_i = \sum_{j\leq i,(i-j)\%k=0} a_j\)
做法
- 变换相当于对序列做矩阵乘法。注意到三种操作的矩阵可以交换。
- 故可先进行若干次变换1,再进行变换 2,最后进行变换 3。
- 考虑变换注意到变换的结果每个元素可被 \(a_1,a_2,....a_n\) 线性表示,第 \(k\) 次,序列变成 \(\{\binom{k-1}{k-1}a_1,\binom{k}{k-1}a_1+\binom{k-1}{k-1}a_2,\binom{k+1}{k-1}a_1+\binom{k}{k-1}a_2+\binom{k-1}{k-1}a_3\,......\}\),可以数学归纳证明。
- 可以看成 \(\{a_1,a_2,a_3,.....\}\) 与 \(\{\binom{k-1}{k-1},\binom{k}{k-1},\binom{k+1}{k-1}.....\}\) 卷积。
复盘
- rdc 义正言辞地表示操作顺序是有关的!【卜】,活鱼的这个识破极为关键。
- 做 k 次前缀和这样的经典问题,居然在比赛时磨一年洋工。
- 组合数学,还得练啊。
M. Code
upsolved by sdcgvhgj
题意 给一些红色的点,一些蓝色的点,能否用一条直线隔开。
复盘 比赛时想找关键点枚举直线,笨蛋啊!
做法 check 凸包是否有交。
不观察性质,看着 \(n\leq100\) 就开始白给。
总结
- 糟糕的比赛节奏,在所有 AC 的题上,都有很多不必要的资源消耗。
- 键盘上的选手和键盘下的选手,缺乏沟通。
- 未能成功识破 D、M。
- K、L 公式推倒不熟练。
2019 Multi-University Training Contest 1的更多相关文章
- 2019 Nowcoder Multi-University Training Contest 4 E Explorer
线段树分治. 把size看成时间,相当于时间 $l$ 加入这条边,时间 $r+1$ 删除这条边. 注意把左右端点的关系. #include <bits/stdc++.h> ; int X[ ...
- 2019 Nowcoder Multi-University Training Contest 1 H-XOR
由于每个元素贡献是线性的,那么等价于求每个元素出现在多少个异或和为$0$的子集内.因为是任意元素可以去异或,那么自然想到线性基.先对整个集合A求一遍线性基,设为$R$,假设$R$中元素个数为$r$,那 ...
- 2019 Multi-University Training Contest 8
2019 Multi-University Training Contest 8 C. Acesrc and Good Numbers 题意 \(f(d,n)\) 表示 1 到 n 中,d 出现的次数 ...
- 2019 Multi-University Training Contest 7
2019 Multi-University Training Contest 7 A. A + B = C 题意 给出 \(a,b,c\) 解方程 \(a10^x+b10^y=c10^z\). tri ...
- 2019 Multi-University Training Contest 2
2019 Multi-University Training Contest 2 A. Another Chess Problem B. Beauty Of Unimodal Sequence 题意 ...
- 2019 Multi-University Training Contest 5
2019 Multi-University Training Contest 5 A. fraction upsolved 题意 输入 \(x,p\),输出最小的 \(b\) 使得 \(bx\%p&l ...
- HDU校赛 | 2019 Multi-University Training Contest 6
2019 Multi-University Training Contest 6 http://acm.hdu.edu.cn/contests/contest_show.php?cid=853 100 ...
- HDU校赛 | 2019 Multi-University Training Contest 5
2019 Multi-University Training Contest 5 http://acm.hdu.edu.cn/contests/contest_show.php?cid=852 100 ...
- HDU校赛 | 2019 Multi-University Training Contest 4
2019 Multi-University Training Contest 4 http://acm.hdu.edu.cn/contests/contest_show.php?cid=851 100 ...
随机推荐
- 原生应用使用cordova并与h5应用分离
个人原创地址:https://www.jianshu.com/p/1ad536e76640 1.需求与使用场景 打开一个新页面,要求能够加载本地zip格式的h5应用,该应用使用了某些原生能力:能够 ...
- Windows cmd用语
windows cmd用语. shutdown: -l 注销 -s 关闭计算机 ...
- 【Vue前端】Vue前端注册业务实现!!!【代码】
用户注册前端逻辑 1. Vue绑定注册界面准备 1.导入Vue.js库和ajax请求的库 <script type="text/javascript" src="{ ...
- 搭建nexus私服
一.安装 1.从网上下载nexus软件https://www.sonatype.com/download-oss-sonatype 下载Nexus Repository Manager OSS软件包 ...
- 【JDK】JDK源码分析-AbstractQueuedSynchronizer(3)
概述 前文「JDK源码分析-AbstractQueuedSynchronizer(2)」分析了 AQS 在独占模式下获取资源的流程,本文分析共享模式下的相关操作. 其实二者的操作大部分是类似的,理解了 ...
- 后端基于方法的权限控制--Spirng-Security
后端基于方法的权限控制--Spirng-Security 默认情况下, Spring Security 并不启用方法级的安全管控. 启用方法级的管控后, 可以针对不同的方法通过注解设置不同的访问条件: ...
- SpringBoot分布式:Dubbo+zookeeper
西部开源-秦疆老师:SpringBoot + Dubbo + zookeeper 秦老师交流Q群号: 664386224 未授权禁止转载!编辑不易 , 转发请注明出处!防君子不防小人,共勉! 基础知识 ...
- 100天搞定机器学习|Day36用有趣的方式解释梯度下降算法
本文为3Blue1Brown神经网络课程讲解第二部分<Gradient descent, how neural networks learn >的学习笔记,观看地址:www.bilibil ...
- 100天搞定机器学习|day39 Tensorflow Keras手写数字识别
提示:建议先看day36-38的内容 TensorFlow™ 是一个采用数据流图(data flow graphs),用于数值计算的开源软件库.节点(Nodes)在图中表示数学操作,图中的线(edge ...
- GSS4&&花仔游历各国
首先呢,我们想到一种数据结构可以区间开方,一看就不行,但是一看就算是10^18开六次方也只剩一,就不用开根了,所以可以想到用线段树或者分块水过,由于本人 不会用分块,只能用常数巨大的线段树 Code ...