K-近邻算法

一、算法概述

(1)采用测量不同特征值之间的距离方法进行分类

  • 优点: 精度高、对异常值不敏感、无数据输入假定。
  • 缺点: 计算复杂度高、空间复杂度高。

(2)KNN模型的三个要素

kNN算法模型实际上就是对特征空间的的划分。模型有三个基本要素:距离度量、K值的选择和分类决策规则的决定。

  • 距离度量

    距离定义为:

    \[L_p(x_i,x_j)=\left( \sum^n_{l=1} |x_i^{(l)} - x_j^{(l)}|^p \right) ^{\frac{1}{p}}
    \]

    一般使用欧式距离:p = 2的个情况

    \[L_p(x_i,x_j)=\left( \sum^n_{l=1} |x_i^{(l)} - x_j^{(l)}|^2 \right) ^{\frac{1}{2}}
    \]

  • K值的选择

    一般根据经验选择,需要多次选择对比才可以选择一个比较合适的K值。

    如果K值太小,会导致模型太复杂,容易产生过拟合现象,并且对噪声点非常敏感。

    如果K值太大,模型太过简单,忽略的大部分有用信息,也是不可取的。

  • 分类决策规则

    一般采用多数表决规则,通俗点说就是在这K个类别中,哪种类别最后就判别为哪种类型

二、实施kNN算法

2.1 伪代码

  • 计算法已经类别数据集中的点与当前点之间的距离
  • 按照距离递增次序排序
  • 选取与但前点距离最小的k个点
  • 确定前k个点所在类别的出现频率
  • 返回前k个点出现频率最高的类别作为当前点的预测分类

#### 2.2 实际代码

def classify0(inX, dataSet, labels, k):
dataSetSize = dataSet.shape[0]
diffMat = tile(inX, (dataSetSize,1)) - dataSet
sqDiffMat = diffMat**2
sqDistances = sqDiffMat.sum(axis=1)
distances = sqDistances**0.5
sortedDistIndicies = distances.argsort()
classCount={}
for i in range(k):
voteIlabel = labels[sortedDistIndicies[i]]
classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1
sortedClassCount = sorted(classCount.items(), key=operator.itemgetter(1), reverse=True)
return sortedClassCount[0][0]

三、实际案例:使用kNN算法改进约会网站的配对效果

我的朋友阿J一直使用在线约会软件寻找约会对象,他曾经交往过三种类型的人:

  • 不喜欢的人
  • 感觉一般的人
  • 非常喜欢的人

步骤:

  • 收集数据
  • 准备数据:也就是读取数据的过程
  • 分析数据:使用Matplotlib画出二维散点图
  • 训练算法
  • 测试算法
  • 使用算法

3.1 准备数据

样本数据共有1000个,3个特征值,共有4列数据,最后一列表示标签分类(0:不喜欢的人;1:感觉一般的人;2:非常喜欢的人)

特征

  • 每年获得的飞行常客里程数
  • 玩视频游戏所好的时间百分比
  • 每周消费的冰淇淋公斤数

部分数据如下:

40920	8.326976	0.953952	3
14488 7.153469 1.673904 2
26052 1.441871 0.805124 1
75136 13.147394 0.428964 1
38344 1.669788 0.134296 1
72993 10.141740 1.032955 1
35948 6.830792 1.213192 3
42666 13.276369 0.543880 3
67497 8.631577 0.749278 1
35483 12.273169 1.508053 3

读取数据(读取txt文件)

def file2matrix(filename):
fr = open(filename)
numberOfLines = len(fr.readlines()) #get the number of lines in the file
returnMat = zeros((numberOfLines,3)) #prepare matrix to return
classLabelVector = [] #prepare labels return
fr = open(filename)
index = 0
for line in fr.readlines():
line = line.strip()
listFromLine = line.split('\t')
returnMat[index,:] = listFromLine[0:3]
classLabelVector.append(int(listFromLine[-1]))
index += 1
return returnMat,classLabelVector

3.2 分析数据:使用Matplotlib创建散点图

初步分析
import matplotlib
import matplotlib.pyplot as plt plt.rcParams['font.sans-serif'] = ['Microsoft YaHei'] fig = plt.figure()
ax = fig.add_subplot(111)
ax.scatter(datingDataMat[:,1], datingDataMat[:,2])
ax.set_xlabel("玩视频游戏所耗时间百分比")
ax.set_ylabel("每周消费的冰淇淋公斤数")
plt.show()

因为有三种类型的分类,这样看的不直观,我们添加以下颜色

fig = plt.figure()
ax = fig.add_subplot(111)
ax.scatter(datingDataMat[:,1], datingDataMat[:,2])
ax.scatter(datingDataMat[:,1], datingDataMat[:,2], 15.0*array(datingLabels), 15.0*array(datingLabels))
ax.set_xlabel("玩视频游戏所耗时间百分比")
ax.set_ylabel("每周消费的冰淇淋公斤数")
plt.show()

通过都多次的尝试后发现,玩游戏时间和冰淇淋这个两个特征关系比较明显

具体的步骤:

  • 分别将标签为1,2,3的三种类型的数据分开
  • 使用matplotlib绘制,并使用不同的颜色加以区分
datingDataType1 = array([[x[0][0],x[0][1],x[0][2]] for x in zip(datingDataMat,datingLabels) if x[1]==1])
datingDataType2 = array([[x[0][0],x[0][1],x[0][2]] for x in zip(datingDataMat,datingLabels) if x[1]==2])
datingDataType3 = array([[x[0][0],x[0][1],x[0][2]] for x in zip(datingDataMat,datingLabels) if x[1]==3]) fig, axs = plt.subplots(2, 2, figsize = (15,10))
axs[0,0].scatter(datingDataType1[:,0], datingDataType1[:,1], s = 20, c = 'red')
axs[0,1].scatter(datingDataType2[:,0], datingDataType2[:,1], s = 30, c = 'green')
axs[1,0].scatter(datingDataType3[:,0], datingDataType3[:,1], s = 40, c = 'blue')
type1 = axs[1,1].scatter(datingDataType1[:,0], datingDataType1[:,1], s = 20, c = 'red')
type2 = axs[1,1].scatter(datingDataType2[:,0], datingDataType2[:,1], s = 30, c = 'green')
type3 = axs[1,1].scatter(datingDataType3[:,0], datingDataType3[:,1], s = 40, c = 'blue')
axs[1,1].legend([type1, type2, type3], ["Did Not Like", "Liked in Small Doses", "Liked in Large Doses"], loc=2)
axs[1,1].set_xlabel("玩视频游戏所耗时间百分比")
axs[1,1].set_ylabel("每周消费的冰淇淋公斤数") plt.show()

3.3 准备数据:数据归一化

通过上面的图形绘制,发现三个特征值的范围不一样,在使用KNN进行计算距离的时候,数值大的特征值就会对结果产生更大的影响。

数据归一化:就是将几组不同范围的数据,转换到同一个范围内。

公式: newValue = (oldValue - min)/(max - min)

def autoNorm(dataSet):
minVals = dataSet.min(0) # array([[1,20,3], [4,5,60], [7,8,9]]) min(0) = [1, 5, 3]
maxVals = dataSet.max(0)
ranges = maxVals - minVals
normData = zeros(shape(dataSet))
m = dataSet.shape[0]
normData = (dataSet - tile(minVals, (m,1)))/tile(ranges,(m,1))
return normData

3.4 测试算法

我们将原始样本保留20%作为测试集,剩余80%作为训练集

def datingClassTest():
hoRatio = 0.20
datingDataMat,datingLabels = file2matrix('datingTestSet2.txt') #load data setfrom file
normMat = autoNorm(datingDataMat)
m = normMat.shape[0]
numTestVecs = int(m*hoRatio)
errorCount = 0.0
for i in range(numTestVecs):
classifierResult = classify0(normMat[i,:],normMat[numTestVecs:,:],datingLabels[numTestVecs:],3)
if (classifierResult != datingLabels[i]):
errorCount += 1.0
print ("the total error rate is: %f" % (errorCount/float(numTestVecs)))
print (errorCount)

运行结果

the total error rate is: 0.080000
16.0

四、源代码

from numpy import *
import operator
from os import listdir import matplotlib
import matplotlib.pyplot as plt ## KNN function
def classify0(inX, dataSet, labels, k):
dataSetSize = dataSet.shape[0]
diffMat = tile(inX, (dataSetSize,1)) - dataSet
sqDiffMat = diffMat**2
sqDistances = sqDiffMat.sum(axis=1)
distances = sqDistances**0.5
sortedDistIndicies = distances.argsort()
classCount={}
for i in range(k):
voteIlabel = labels[sortedDistIndicies[i]]
classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1
sortedClassCount = sorted(classCount.items(), key=operator.itemgetter(1), reverse=True)
return sortedClassCount[0][0] # read txt data
def file2matrix(filename):
fr = open(filename)
numberOfLines = len(fr.readlines()) #get the number of lines in the file
returnMat = zeros((numberOfLines,3)) #prepare matrix to return
classLabelVector = [] #prepare labels return
fr = open(filename)
index = 0
for line in fr.readlines():
line = line.strip()
listFromLine = line.split('\t')
returnMat[index,:] = listFromLine[0:3]
classLabelVector.append(int(listFromLine[-1]))
index += 1
return returnMat,classLabelVector def autoNorm(dataSet):
minVals = dataSet.min(0) # array([[1,20,3], [4,5,60], [7,8,9]]) min(0) = [1, 5, 3]
maxVals = dataSet.max(0)
ranges = maxVals - minVals
normData = zeros(shape(dataSet))
m = dataSet.shape[0]
normData = (dataSet - tile(minVals, (m,1)))/tile(ranges,(m,1))
return normData def drawScatter1(datingDataMat, datingLabels):
plt.rcParams['font.sans-serif'] = ['Microsoft YaHei'] fig = plt.figure()
ax = fig.add_subplot(111)
ax.scatter(datingDataMat[:,1], datingDataMat[:,2])
ax.set_xlabel("玩视频游戏所耗时间百分比")
ax.set_ylabel("每周消费的冰淇淋公斤数")
plt.show() def drawScatter2(datingDataMat, datingLabels):
fig = plt.figure()
ax = fig.add_subplot(111)
ax.scatter(datingDataMat[:,1], datingDataMat[:,2])
ax.scatter(datingDataMat[:,1], datingDataMat[:,2], 15.0*array(datingLabels), 15.0*array(datingLabels))
ax.set_xlabel("玩视频游戏所耗时间百分比")
ax.set_ylabel("每周消费的冰淇淋公斤数")
plt.show() def drawScatter3(datingDataMat, datingLabels):
datingDataType1 = array([[x[0][0],x[0][1],x[0][2]] for x in zip(datingDataMat,datingLabels) if x[1]==1])
datingDataType2 = array([[x[0][0],x[0][1],x[0][2]] for x in zip(datingDataMat,datingLabels) if x[1]==2])
datingDataType3 = array([[x[0][0],x[0][1],x[0][2]] for x in zip(datingDataMat,datingLabels) if x[1]==3]) fig, axs = plt.subplots(2, 2, figsize = (15,10))
axs[0,0].scatter(datingDataType1[:,0], datingDataType1[:,1], s = 20, c = 'red')
axs[0,1].scatter(datingDataType2[:,0], datingDataType2[:,1], s = 30, c = 'green')
axs[1,0].scatter(datingDataType3[:,0], datingDataType3[:,1], s = 40, c = 'blue')
type1 = axs[1,1].scatter(datingDataType1[:,0], datingDataType1[:,1], s = 20, c = 'red')
type2 = axs[1,1].scatter(datingDataType2[:,0], datingDataType2[:,1], s = 30, c = 'green')
type3 = axs[1,1].scatter(datingDataType3[:,0], datingDataType3[:,1], s = 40, c = 'blue')
axs[1,1].legend([type1, type2, type3], ["Did Not Like", "Liked in Small Doses", "Liked in Large Doses"], loc=2)
axs[1,1].set_xlabel("玩视频游戏所耗时间百分比")
axs[1,1].set_ylabel("每周消费的冰淇淋公斤数") plt.show() def datingClassTest():
hoRatio = 0.20
datingDataMat,datingLabels = file2matrix('datingTestSet2.txt') #load data setfrom file
normMat = autoNorm(datingDataMat)
m = normMat.shape[0]
numTestVecs = int(m*hoRatio)
errorCount = 0.0
for i in range(numTestVecs):
classifierResult = classify0(normMat[i,:],normMat[numTestVecs:,:],datingLabels[numTestVecs:],3)
if (classifierResult != datingLabels[i]):
errorCount += 1.0
print ("the total error rate is: %f" % (errorCount/float(numTestVecs)))
print (errorCount) datingDataMat, datingLabels = file2matrix("datingTestSet2.txt") drawScatter1(datingDataMat, datingLabels)
drawScatter2(datingDataMat, datingLabels)
drawScatter3(datingDataMat, datingLabels) datingClassTest()

[机器学习笔记]kNN进邻算法的更多相关文章

  1. 机器学习笔记(五) K-近邻算法

    K-近邻算法 (一)定义:如果一个样本在特征空间中的k个最相似的样本中的大多数属于某一个类别,则该样本也属于这个类别. (二)相似的样本,特征之间的值应该是相近的,使用k-近邻算法需要做标准化处理.否 ...

  2. kNN进邻算法

    一.算法概述 (1)采用测量不同特征值之间的距离方法进行分类 优点: 精度高.对异常值不敏感.无数据输入假定. 缺点: 计算复杂度高.空间复杂度高. (2)KNN模型的三个要素 kNN算法模型实际上就 ...

  3. 《机器学习实战》——k-近邻算法Python实现问题记录(转载)

    py2.7 : <机器学习实战> k-近邻算法 11.19 更新完毕 原文链接 <机器学习实战>第二章k-近邻算法,自己实现时遇到的问题,以及解决方法.做个记录. 1.写一个k ...

  4. Python机器学习笔记:异常点检测算法——LOF(Local Outiler Factor)

    完整代码及其数据,请移步小编的GitHub 传送门:请点击我 如果点击有误:https://github.com/LeBron-Jian/MachineLearningNote 在数据挖掘方面,经常需 ...

  5. 机器学习实战读书笔记(二)k-近邻算法

    knn算法: 1.优点:精度高.对异常值不敏感.无数据输入假定 2.缺点:计算复杂度高.空间复杂度高. 3.适用数据范围:数值型和标称型. 一般流程: 1.收集数据 2.准备数据 3.分析数据 4.训 ...

  6. 机器学习实践之K-近邻算法实践学习

    关于本文说明,本人原博客地址位于http://blog.csdn.net/qq_37608890,本文来自笔者于2017年12月04日 22:54:26所撰写内容(http://blog.csdn.n ...

  7. 机器学习实战(一)k-近邻算法

    转载请注明源出处:http://www.cnblogs.com/lighten/p/7593656.html 1.原理 本章介绍机器学习实战的第一个算法——k近邻算法(k Nearest Neighb ...

  8. 吴裕雄--天生自然python机器学习:使用K-近邻算法改进约会网站的配对效果

    在约会网站使用K-近邻算法 准备数据:从文本文件中解析数据 海伦收集约会数据巳经有了一段时间,她把这些数据存放在文本文件(1如1^及抓 比加 中,每 个样本数据占据一行,总共有1000行.海伦的样本主 ...

  9. 机器学习实战笔记(1)——k-近邻算法

    机器学习实战笔记(1) 1. 写在前面 近来感觉机器学习,深度学习神马的是越来越火了,从AlphaGo到Master,所谓的人工智能越来越NB,而我又是一个热爱新潮事物的人,于是也来凑个热闹学习学习. ...

随机推荐

  1. nginx::环境搭建

    ubuntu18.04 环境 1.需要gcc 环境,如果没有gcc环境,则需要安装 apt install gcc .安装pcre依赖库 PCRE(Perl Compatible Regular Ex ...

  2. PAT-1022 Digital Library (30 分) 字符串处理

    A Digital Library contains millions of books, stored according to their titles, authors, key words o ...

  3. 基础安全术语科普(三)——RAT

    什么是RAT? RAT 即 Remote Access Tools (远程管理工具或远程访问工具)的缩写.通俗点说就是木马病毒. RAT 分为两部分——客户端 与 服务端. RAT的工作原理? 服务端 ...

  4. qt 计时器自动刷新图片

    计时器 QTimer *timer; timer->start (); void PictureShow::stopStartPage() { if (timer->isActive()) ...

  5. LHH的acm奋斗史,至强的精神(转载)

    还记得2年前的一个晚上,我和一个女孩一起写完了这篇文章.写完后,她哭了,我笑了.然后,她走了,我哭了.2年后,我又找到她,这次,我没有让她走掉,她成了我的新娘. 不知道什么时候,开始知道ACM:也不知 ...

  6. Mysql数据库(八)存储过程与存储函数

    一.创建存储过程与存储函数 1.创建存储过程(实现统计tb_borrow1数据表中指定图书编号的图书的借阅次数) mysql> delimiter // mysql> CREATE PRO ...

  7. docker-compose下的java应用启动顺序两部曲之一:问题分析

    在docker-compose编排多个容器时,需要按实际情况控制各容器的启动顺序,本文是<docker-compose下的java应用启动顺序两部曲>的第一篇,文中会分析启动顺序的重要性, ...

  8. SpringBoot是如何加载配置文件的?

    前言 本文针对版本2.2.0.RELEASE来分析SpringBoot的配置处理源码,通过查看SpringBoot的源码来弄清楚一些常见的问题比如: SpringBoot从哪里开始加载配置文件? Sp ...

  9. [考试反思]0927csp-s模拟测试53:沦陷

    很喜欢Yu-shi说过的一句话 在OI里,菜即是原罪 对啊. 都会.谁信呢? 没有分数,你说话算什么呢? 你就是菜,你就是不对,没有别的道理. 最没有用的,莫过于改题大神,这就是菜的借口. 但是其实这 ...

  10. thinkpad p1 gen2 扬声器音量异常问题解决过程

    在弹出 "用户帐户控制" 对话框时的声音明显不对,测试后发现规律:音量在30以内,1分钟内扬声器无声音发出,运行ccleaner弹出 "用户帐户控制" 对话框, ...