luogu P3110 [USACO14DEC]驮运Piggy Back |最短路
题目描述
Bessie and her sister Elsie graze in different fields during the day, and in the evening they both want to walk back to the barn to rest. Being clever bovines, they come up with a plan to minimize the total amount of energy they both spend while walking.
Bessie spends B units of energy when walking from a field to an adjacent field, and Elsie spends E units of energy when she walks to an adjacent field. However, if Bessie and Elsie are together in the same field, Bessie can carry Elsie on her shoulders and both can move to an adjacent field while spending only P units of energy (where P might be considerably less than B+E, the amount Bessie and Elsie would have spent individually walking to the adjacent field). If P is very small, the most energy-efficient solution may involve Bessie and Elsie traveling to a common meeting field, then traveling together piggyback for the rest of the journey to the barn. Of course, if P is large, it may still make the most sense for Bessie and Elsie to travel
separately. On a side note, Bessie and Elsie are both unhappy with the term "piggyback", as they don't see why the pigs on the farm should deserve all the credit for this remarkable form of
transportation.
Given B, E, and P, as well as the layout of the farm, please compute the minimum amount of energy required for Bessie and Elsie to reach the barn.
Bessie 和 Elsie在不同的区域放牧,他们希望花费最小的能量返回谷仓。从一个区域走到一个相连区域,Bessie要花费B单位的能量,Elsie要花费E单位的能量。
如果某次他们两走到同一个区域,Bessie 可以背着 Elsie走路,花费P单位的能量走到另外一个相连的区域。当然,存在P>B+E的情况。
相遇后,他们可以一直背着走,也可以独立分开。
输入格式
INPUT: (file piggyback.in)
The first line of input contains the positive integers B, E, P, N, and M. All of these are at most 40,000. B, E, and P are described above. N is the number of fields in the farm (numbered 1..N, where N >= 3), and M is the number of connections between fields. Bessie and Elsie start in fields 1 and 2, respectively. The barn resides in field N.
The next M lines in the input each describe a connection between a pair of different fields, specified by the integer indices of the two fields. Connections are bi-directional. It is always possible to travel from field 1 to field N, and field 2 to field N, along a series of such connections.
输出格式
OUTPUT: (file piggyback.out)
A single integer specifying the minimum amount of energy Bessie and
Elsie collectively need to spend to reach the barn. In the example
shown here, Bessie travels from 1 to 4 and Elsie travels from 2 to 3
to 4. Then, they travel together from 4 to 7 to 8.
#include<queue>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
const int N=50000,M=4*N;
int next[M],head[N],go[M],tot;
inline void add(int u,int v){
next[++tot]=head[u];head[u]=tot;go[tot]=v;
next[++tot]=head[v];head[v]=tot;go[tot]=u;
}
int dis1[N],dis2[N],dis3[N];
struct node{
int u,d;
bool operator<(const node& rhs)const{
return d>rhs.d;
}
};
priority_queue<node>q;
inline void dj1(int s){
memset(dis1,0x3f,sizeof(dis1));
q.push((node){s,0});
dis1[s]=0;
while(q.size()){
int u=q.top().u,d=q.top().d;
q.pop();
if(d!=dis1[u])continue;
for(int i=head[u];i;i=next[i]){
int v=go[i];
if(dis1[v]>dis1[u]+1){
dis1[v]=dis1[u]+1;
q.push((node){v,dis1[v]});
}
}
}
}
inline void dj2(int s){
memset(dis2,0x3f,sizeof(dis2));
q.push((node){s,0});
dis2[s]=0;
while(q.size()){
int u=q.top().u,d=q.top().d;
q.pop();
if(d!=dis2[u])continue;
for(int i=head[u];i;i=next[i]){
int v=go[i];
if(dis2[v]>dis2[u]+1){
dis2[v]=dis2[u]+1;
q.push((node){v,dis2[v]});
}
}
}
}
inline void dj3(int s){
memset(dis3,0x3f,sizeof(dis3));
q.push((node){s,0});
dis3[s]=0;
while(q.size()){
int u=q.top().u,d=q.top().d;
q.pop();
if(d!=dis3[u])continue;
for(int i=head[u];i;i=next[i]){
int v=go[i];
if(dis3[v]>dis3[u]+1){
dis3[v]=dis3[u]+1;
q.push((node){v,dis3[v]});
}
}
}
}
int main(){
int b,e,p,n,m;
cin>>b>>e>>p>>n>>m;
for(int i=1,u,v;i<=m;i++){
scanf("%d%d",&u,&v);
add(u,v);
}
dj1(1),dj2(2),dj3(n);
if(p>=b+e){
cout<<dis1[n]*b+dis2[n]*e<<endl;
return 0;
}
int ans=1e9;
for(int i=1;i<=n;i++)
ans=min(ans,dis1[i]*b+dis2[i]*e+dis3[i]*p);
cout<<ans<<endl;
}
luogu P3110 [USACO14DEC]驮运Piggy Back |最短路的更多相关文章
- 【题解】Luogu P3110 [USACO14DEC]驮运Piggy Back
[题解]Luogu P3110 [USACO14DEC]驮运Piggy Back 题目描述 Bessie and her sister Elsie graze in different fields ...
- Luogu P3110 [USACO14DEC]驮运Piggy Back
解题思路 看到下面很多人都在说什么遇到了之后要不要背着走,其实根本不需要,同样的我也是跑了三遍$SPFA$,求出了以$1$为起点到个点的$dist$,和以$2$为起点到个点的$dist$,还有以$n$ ...
- 洛谷P3110 [USACO14DEC]驮运Piggy Back
P3110 [USACO14DEC]驮运Piggy Back 题目描述 贝西和她的妹妹艾尔斯白天在不同的地方吃草,而在晚上他们都想回到谷仓休息.聪明的牛仔,他们想出了一个计划,以尽量减少他们在步行时花 ...
- P3110 [USACO14DEC]驮运Piggy Back
传送门 做过次短路后,再来做这题感觉轻松不少. 这题看着就像最短路模板题. 思路: 虽说题目看起来比较水,但是码起来还是有点难度的.(对我这个蒟蒻来说) 这道题,跟"路障"一题差不 ...
- [USACO14DEC]驮运Piggy Back
题目描述 Bessie 和 Elsie在不同的区域放牧,他们希望花费最小的能量返回谷仓.从一个区域走到一个相连区域,Bessie要花费B单位的能量,Elsie要花费E单位的能量. 如果某次他们两走到同 ...
- 2018.08.17 洛谷P3110 [USACO14DEC]驮运(最短路)
传送门 一道sb最短路,从两个起点和终点跑一边最短路之后直接枚举两人的汇合点求最小值就行了. 代码: #include<bits/stdc++.h> #define N 40005 #de ...
- [luoguP3110] [USACO14DEC]驮运Piggy Back(SPFA || BFS)
传送门 以 1,2,n 为起点跑3次 bfs 或者 spfa 那么 ans = min(ans, dis[1][i] * B + dis[2][i] * E + dis[3][i] * P) (1 & ...
- 洛谷 [P3110] 驮运
题目略带一点贪心的思想,先跑三遍最短路(边权为一,BFS比SPFA高效) 一起跑总比分开跑高效,枚举两人在何点汇合,输出最小值. #include <iostream> #include ...
- luogu P3111 [USACO14DEC]牛慢跑Cow Jog_Sliver |贪心+模拟
有N (1 <= N <= 100,000)头奶牛在一个单人的超长跑道上慢跑,每头牛的起点位置都不同.由于是单人跑道,所有他们之间不能相互超越.当一头速度快的奶牛追上另外一头奶牛的时候,他 ...
随机推荐
- P3665 [USACO17OPEN]Switch Grass
题目描述 N个点M条边的无向图,每个点有一个初始颜色,每次改变一个点的颜色,求改变后整张图上颜色不同的点之间的距离最小值. 思路 考虑整张图的距离最小值一定是一条边,而不可能是一条路径,那么显然这条边 ...
- P3043 [USACO12JAN]牛联盟Bovine Alliance——并查集
题目描述 给出n个点m条边的图,现把点和边分组,每条边只能和相邻两点之一分在一组,点可以单独一组,问分组方案数. (友情提示:每个点只能分到一条边,中文翻译有问题,英文原版有这样一句:The cows ...
- C语言:大数取余
大数取余数(数组) 今天做学校的oj时遇到一题,问题可见一下截图: 查遍各大论坛,都没有遇到合适的方法,普通方法不可用,要采用数组的形式. 被除数超过long long类型,不能采用常规思路,否则会出 ...
- centos6升级openssh至7.9
1.为了防止升级失败登陆不了,所以需要安装telnet mkdir /root/ssh_updateyum install -y telnet-serveryum install -y xinetd ...
- 二、netcore跨平台之 Linux部署nginx代理webapi
上一章,我们讲了在linux上安装netcore环境,以及让netcore在linux上运行. 这一章我们开始讲在linux上配置nginx,以及让nginx反向代理我们的webapi. 什么ngin ...
- [第二章]了解storm
1.什么是storm Apache Storm is a free and open source distributed realtime computation system. 免费.开源.分布式 ...
- Python多线程与队列
Python多线程与Queue队列多线程在感官上类似于同时执行多个程序,虽然由于GIL的存在,在Python中无法实现线程的真正并行,但是对于某些场景,多线程仍不失为一个有效的处理方法: 1,不紧急的 ...
- 用maven创建web项目(spring Mvc)
用maven创建web项目(spring Mvc) 1.打开cmd进入到你要创建maven项目的目录下: 2.输入以下命令.然后根据提示输入相应的groupId.artifactId.version: ...
- 搭建Nginx正向代理服务
需求背景: 前段时间公司因为业务需求需要部署一个正向代理,需要内网服务通过正向代理访问到外网移动端厂商域名通道等效果,之前一直用nginx做四层或者七层的反向代理,正向代理还是第一次配置,配置的过程也 ...
- 力扣(LeetCode)买卖股票的最佳时机 个人题解
给定一个数组,它的第 i 个元素是一支给定股票第 i 天的价格. 如果你最多只允许完成一笔交易(即买入和卖出一支股票),设计一个算法来计算你所能获取的最大利润. 注意你不能在买入股票前卖出股票. 示例 ...