原题传送门

希望这题不会让你对麻将的热爱消失殆尽

我们珂以统计每种牌出现的次数,不需要统计是第几张牌

判一副牌能不能和,类似这道题

对于这题:

设\(f[i][j][k][0/1]\)表示前\(i\)种牌,顺子\((i-1,i,i+1)\)出现了\(j\)次,顺子\((i,i+1,i+2)\)出现了\(k\)次,有/没有雀头的最多面子数。转移比较简单

我们珂以发现\(j\)这维不太重要,强制dp值不超过\(4\)(超过\(4\)也没有用),雀头数不超过\(7\)(类似),爆搜珂以搜出本质不同的状态一共有\(2091\)个

珂以在每个状态珂以在后面加\(x \in [0,4]\)张点数+1的牌,这珂以构成一个自动机,我们叫她和牌自动机

我们每得到一个状态,珂以在和牌自动机上走,判断是否能和

我们设\(dp[i][j][k]\)表示看到前\(i\)种牌,在和牌自动机上的\(j\)状态,已经摸了\(k\)张牌,不胡的种类数,最后算一下期望就珂以了

我们珂以用滚动数组把\(i\)滚掉优化空间

#include <bits/stdc++.h>
#define mod 998244353
#define N 405
#define getchar nc
using namespace std;
inline char nc(){
static char buf[100000],*p1=buf,*p2=buf;
return p1==p2&&(p2=(p1=buf)+fread(buf,1,100000,stdin),p1==p2)?EOF:*p1++;
}
inline int read()
{
register int x=0,f=1;register char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9')x=(x<<3)+(x<<1)+ch-'0',ch=getchar();
return x*f;
}
inline void write(register int x)
{
if(!x)putchar('0');if(x<0)x=-x,putchar('-');
static int sta[20];register int tot=0;
while(x)sta[tot++]=x%10,x/=10;
while(tot)putchar(sta[--tot]+48);
}
inline int Min(register int a,register int b)
{
return a<b?a:b;
}
inline int Max(register int a,register int b)
{
return a>b?a:b;
}
struct node{
int f[3][3][2],cnt;
inline void init()
{
memset(f,-1,sizeof(f));
f[0][0][0]=cnt=0;
}
inline int hu()
{
if(cnt>=7)
return 1;
for(register int i=0;i<3;++i)
for(register int j=0;j<3;++j)
if(f[i][j][1]>=4)
return 1;
return 0;
}
}rt,S[2100];
bool operator < (node a,node b){
if(a.cnt!=b.cnt)
return a.cnt<b.cnt;
for(register int i=0;i<3;++i)
for(register int j=0;j<3;++j)
for(register int k=0;k<2;++k)
if(a.f[i][j][k]!=b.f[i][j][k])
return a.f[i][j][k]<b.f[i][j][k];
return 0;
}
int tot=0;
map<node,int> ma;
inline node trans(register node u,register int w)
{
node v;
v.init();
v.cnt=Min(u.cnt+(w>=2),7);
for(register int i=0;i<3;++i)
for(register int j=0;j<3;++j)
{
if(~u.f[i][j][0])
{
for(register int k=0;k<3&&i+j+k<=w;++k)
v.f[j][k][0]=Max(v.f[j][k][0],Min(u.f[i][j][0]+i+(w-i-j-k>=3),4));
if(w>=2)
for(register int k=0;k<3&&i+j+k<=w-2;++k)
v.f[j][k][1]=Max(v.f[j][k][1],Min(u.f[i][j][0]+i,4));
}
if(~u.f[i][j][1])
for(register int k=0;k<3&&i+j+k<=w;++k)
v.f[j][k][1]=Max(v.f[j][k][1],Min(u.f[i][j][1]+i+(w-i-j-k>=3),4));
}
return v;
}
inline void build(register node u)
{
if(u.hu())
return;
if(ma.find(u)!=ma.end())
return;
ma[u]=++tot;
S[tot]=u;
for(register int i=0;i<=4;++i)
build(trans(u,i));
}
int n,s[N],ans;
int fac[N],inv[N],invf[N],tr[2100][5],f[2][2100][N];
inline int C(register int n,register int m)
{
return 1ll*fac[n]*invf[m]%mod*invf[n-m]%mod;
}
int main()
{
rt.init();
build(rt);
invf[0]=inv[0]=inv[1]=fac[0]=1;
for(register int i=1;i<N;++i)
fac[i]=1ll*fac[i-1]*i%mod;
for(register int i=2;i<N;++i)
inv[i]=1ll*inv[mod%i]*(mod-mod/i)%mod;
for(register int i=1;i<N;++i)
invf[i]=1ll*invf[i-1]*inv[i]%mod;
n=read();
for(register int i=1;i<=13;++i)
++s[read()],read();
for(register int i=1;i<=tot;++i)
for(register int j=0;j<=4;++j)
tr[i][j]=ma[trans(S[i],j)];
f[0][1][0]=1;
for(register int i=1,sum=0;i<=n;++i)
{
int now=i&1,pre=now^1;
memset(f[now],0,sizeof(f[now]));
for(register int j=1;j<=tot;++j)
for(register int k=s[i];k<=4;++k)
{
if(!tr[j][k])
continue;
int w=1ll*C(4-s[i],k-s[i])*fac[k-s[i]]%mod;
for(register int l=0;l<=4*n-k;++l)
{
if(!f[pre][j][l])
continue;
f[now][tr[j][k]][l+k]=(0ll+f[now][tr[j][k]][l+k]+1ll*f[pre][j][l]*w%mod*C(k+l-sum-s[i],k-s[i])%mod)%mod;
}
}
sum+=s[i];
}
for(register int i=13,w=1;i<=4*n;++i)
{
int now=0;
for(register int j=1;j<=tot;++j)
now=(0ll+now+f[n&1][j][i])%mod;
ans=(0ll+ans+1ll*now*w%mod)%mod;
w=1ll*w*inv[4*n-i]%mod;
}
write(ans);
return 0;
}

【题解】Luogu P5279 [ZJOI2019]麻将的更多相关文章

  1. Luogu P5279 [ZJOI2019]麻将

    ZJOI2019神题,间接送我退役的神题233 考场上由于T2写挂去写爆搜的时候已经没多少时间了,所以就写挂了233 这里不多废话直接开始讲正解吧,我们把算法分成两部分 1.建一个"胡牌自动 ...

  2. 洛谷P5279 [ZJOI2019]麻将

    https://www.luogu.org/problemnew/show/P5279 以下为个人笔记,建议别看: 首先考虑如何判一个牌型是否含有胡的子集.先将牌型表示为一个数组num,其中num[i ...

  3. 洛谷P5279 [ZJOI2019]麻将(乱搞+概率期望)

    题面 传送门 题解 看着题解里一堆巨巨熟练地用着专业用语本萌新表示啥都看不懂啊--顺便\(orz\)余奶奶 我们先考虑给你一堆牌,如何判断能否胡牌 我们按花色大小排序,设\(dp_{0/1,i,j,k ...

  4. 洛谷 P5279 - [ZJOI2019]麻将(dp 套 dp)

    洛谷题面传送门 一道 dp 套 dp 的 immortal tea 首先考虑如何判断一套牌是否已经胡牌了,考虑 \(dp\)​​​​​.我们考虑将所有牌按权值大小从大到小排成一列,那我们设 \(dp_ ...

  5. [ZJOI2019]麻将(动态规划,自动机)

    [ZJOI2019]麻将(动态规划,自动机) 题面 洛谷 题解 先做一点小铺垫,对于一堆牌而言,我们只需要知道这\(n\)张牌分别出现的次数就行了,即我们只需要知道一个长度为\(n\)的串就可以了. ...

  6. [题解] Luogu P5446 [THUPC2018]绿绿和串串

    [题解] Luogu P5446 [THUPC2018]绿绿和串串 ·题目大意 定义一个翻转操作\(f(S_n)\),表示对于一个字符串\(S_n\), 有\(f(S)= \{S_1,S_2,..., ...

  7. 题解 洛谷 P5279 【[ZJOI2019]麻将】

    这题非常的神啊...蒟蒻来写一篇题解. Solution 首先考虑如何判定一副牌是否是 "胡" 的. 不要想着统计个几个值 \(O(1)\) 算,可以考虑复杂度大一点的. 首先先把 ...

  8. 【题解】Luogu P5327 [ZJOI2019]语言

    原题传送门 看到这种树上统计点对个数的题一般是线段树合并,这题也不出意外 先对这棵树进行树剖,对于每次普及语言,在\(x,y\)两点的线段树上的\(x,y\)两位置打\(+1\)标记,在点\(fa[l ...

  9. 【题解】Luogu P5328 [ZJOI2019]浙江省选

    原题传送门 看起来挺妙实际很暴力的一题 已知每个选手的分数都是平面上的直线 题目实际就是让我们求每条直线在整点处最大是第几大 我们考虑先对所有的直线进行半平面交(因为\(a_i\)都是正整数,所以比普 ...

随机推荐

  1. Sublime Text 3关闭自动升级提醒

    由于种种原因,导致不想升级现有版本的ST3,但是被它的升级提醒弹窗严重骚扰! ||||||||||| 解 决 办 法 ||||||||||| 1.首选项 - 设置 - 用户(快捷键 ❀,)打开“Pre ...

  2. 拼图验证码 js,vue

    可查看github网站

  3. Java中Set真的是无序的吗?

    我们经常听说List是有序且可重复的,Set是无序且不重复的.这是一个误区,这里所说的顺序有两个概念,一是按照添加的顺序排列,二是按,照自然顺序a-z排列.Set并不是无序的传统所说的Set无序指的是 ...

  4. Spring Cloud Hystrix基本原理

    本篇学习Spring Cloud家族中的重要成员:Hystrix.分布式系统中一个服务可能依赖着很多其他服务,在高并发的场景下,如何保证依赖的某些服务如果出了问题不会导致主服务宕机这个问题就会变得异常 ...

  5. Chrome调试工具Developer Tools——前端必备神器

    本文链接:https://blog.csdn.net/u012542647/article/details/79401485 今天要给大家介绍一个神器,就是谷歌浏览器(Chorme)自带的前端调试工具 ...

  6. Css3 文字渐变整理(一)

    一.文本颜色渐变 <gradient> :可以应用在所有接受图像的属性上,允许使用简单的语法实现颜色渐变,以便UA在渲染页面自动生成图像. 语法:<gradient> = li ...

  7. vue-cli安装webpack项目及初始配置

    这个下载包是自己基于 webpack 搞的,可以看看https://github.com/chichengyu/webpack vue-cli安装 输入 npm install vue-cli -g ...

  8. NIO通信中connect()方法和finishConnect()方法的区别

    1.对于阻塞模式下,调用connect()进行连接操作时,会一直阻塞到连接建立完成(无连接异常的情况下).所以可以不用finishConnect来确认. 2.但在非阻塞模式下,connect()操作是 ...

  9. angular的路由例子

    app.routing.module.ts里面,关键部分 const routes: Routes = [ { path: '', redirectTo : 'c3/c2/mmc', pathMatc ...

  10. Redis 启动 Please see the documentation included with the binary distributions for more details on the --maxheap flag.

    启动redis的时候,出现 主要就是说 没有足够的可用的空间,可以使用maxheap减少redis堆的大小.或者重启系统对系统分页文件进行碎片整理. 解决方法就是在启动的时候加个  --maxheap ...