tensorflow 预训练模型列表

https://github.com/tensorflow/models/tree/master/research/slim

Pre-trained Models

Neural nets work best when they have many parameters, making them powerful function approximators. However, this means they must be trained on very large datasets. Because training models from scratch can be a very computationally intensive process requiring days or even weeks, we provide various pre-trained models, as listed below. These CNNs have been trained on the ILSVRC-2012-CLS image classification dataset.

In the table below, we list each model, the corresponding TensorFlow model file, the link to the model checkpoint, and the top 1 and top 5 accuracy (on the imagenet test set). Note that the VGG and ResNet V1 parameters have been converted from their original caffe formats (here and here), whereas the Inception and ResNet V2 parameters have been trained internally at Google. Also be aware that these accuracies were computed by evaluating using a single image crop. Some academic papers report higher accuracy by using multiple crops at multiple scales.

Model

TF-Slim File

Checkpoint

Top-1 Accuracy

Top-5 Accuracy

Inception V1

Code

inception_v1_2016_08_28.tar.gz

69.8

89.6

Inception V2

Code

inception_v2_2016_08_28.tar.gz

73.9

91.8

Inception V3

Code

inception_v3_2016_08_28.tar.gz

78.0

93.9

Inception V4

Code

inception_v4_2016_09_09.tar.gz

80.2

95.2

Inception-ResNet-v2

Code

inception_resnet_v2_2016_08_30.tar.gz

80.4

95.3

ResNet V1 50

Code

resnet_v1_50_2016_08_28.tar.gz

75.2

92.2

ResNet V1 101

Code

resnet_v1_101_2016_08_28.tar.gz

76.4

92.9

ResNet V1 152

Code

resnet_v1_152_2016_08_28.tar.gz

76.8

93.2

ResNet V2 50^

Code

resnet_v2_50_2017_04_14.tar.gz

75.6

92.8

ResNet V2 101^

Code

resnet_v2_101_2017_04_14.tar.gz

77.0

93.7

ResNet V2 152^

Code

resnet_v2_152_2017_04_14.tar.gz

77.8

94.1

ResNet V2 200

Code

TBA

79.9*

95.2*

VGG 16

Code

vgg_16_2016_08_28.tar.gz

71.5

89.8

VGG 19

Code

vgg_19_2016_08_28.tar.gz

71.1

89.8

MobileNet_v1_1.0_224

Code

mobilenet_v1_1.0_224.tgz

70.9

89.9

MobileNet_v1_0.50_160

Code

mobilenet_v1_0.50_160.tgz

59.1

81.9

MobileNet_v1_0.25_128

Code

mobilenet_v1_0.25_128.tgz

41.5

66.3

MobileNet_v2_1.4_224^*

Code

mobilenet_v2_1.4_224.tgz

74.9

92.5

MobileNet_v2_1.0_224^*

Code

mobilenet_v2_1.0_224.tgz

71.9

91.0

NASNet-A_Mobile_224#

Code

nasnet-a_mobile_04_10_2017.tar.gz

74.0

91.6

NASNet-A_Large_331#

Code

nasnet-a_large_04_10_2017.tar.gz

82.7

96.2

PNASNet-5_Large_331

Code

pnasnet-5_large_2017_12_13.tar.gz

82.9

96.2

PNASNet-5_Mobile_224

Code

pnasnet-5_mobile_2017_12_13.tar.gz

74.2

91.9

tensorflow 预训练模型列表的更多相关文章

  1. tensorflow利用预训练模型进行目标检测(二):预训练模型的使用

    一.运行样例 官网链接:https://github.com/tensorflow/models/blob/master/research/object_detection/object_detect ...

  2. tensorflow利用预训练模型进行目标检测(一):安装tensorflow detection api

    一.tensorflow安装 首先系统中已经安装了两个版本的tensorflow,一个是通过keras安装的, 一个是按照官网教程https://www.tensorflow.org/install/ ...

  3. 文本分类实战(十)—— BERT 预训练模型

    1 大纲概述 文本分类这个系列将会有十篇左右,包括基于word2vec预训练的文本分类,与及基于最新的预训练模型(ELMo,BERT等)的文本分类.总共有以下系列: word2vec预训练词向量 te ...

  4. 使用BERT预训练模型+微调进行文本分类

    本文记录使用BERT预训练模型,修改最顶层softmax层,微调几个epoch,进行文本分类任务. BERT源码 首先BERT源码来自谷歌官方tensorflow版:https://github.co ...

  5. 我的Keras使用总结(4)——Application中五款预训练模型学习及其应用

    本节主要学习Keras的应用模块 Application提供的带有预训练权重的模型,这些模型可以用来进行预测,特征提取和 finetune,上一篇文章我们使用了VGG16进行特征提取和微调,下面尝试一 ...

  6. 文本分类实战(九)—— ELMO 预训练模型

    1 大纲概述 文本分类这个系列将会有十篇左右,包括基于word2vec预训练的文本分类,与及基于最新的预训练模型(ELMo,BERT等)的文本分类.总共有以下系列: word2vec预训练词向量 te ...

  7. pytorch预训练模型的下载地址以及解决下载速度慢的方法

    https://github.com/pytorch/vision/tree/master/torchvision/models 几乎所有的常用预训练模型都在这里面 总结下各种模型的下载地址: 1 R ...

  8. [Pytorch]Pytorch加载预训练模型(转)

    转自:https://blog.csdn.net/Vivianyzw/article/details/81061765 东风的地方 1. 直接加载预训练模型 在训练的时候可能需要中断一下,然后继续训练 ...

  9. 在 C/C++ 中使用 TensorFlow 预训练好的模型—— 间接调用 Python 实现

    现在的深度学习框架一般都是基于 Python 来实现,构建.训练.保存和调用模型都可以很容易地在 Python 下完成.但有时候,我们在实际应用这些模型的时候可能需要在其他编程语言下进行,本文将通过 ...

随机推荐

  1. k8s的node节点无法调度的问题

    1.现象,创建deployment时 2.查看污点 [fedora@k8s-cluster--ycmwlao4q5wz-master- ~]$ kubectl describe node k8s-cl ...

  2. Nginx学习(二)

    ------------恢复内容开始------------ Nginx配置文件 主配置文件结构:四部分 main block:主配置段,既全局配置段,对Http,mail都有效 event{ }事件 ...

  3. Nginx作为代理服务

    代理服务简介 什么是代理服务 代理-代理办理(代理理财.代理收货.代理购物等等). HTTP请求没有代理服务的模型图 HTTP请求具有代理服务的模型图 代理分类 正向代理 反向代理 正向代理 当局域网 ...

  4. 【功能点】php导出excel

    版权声明:本文为博主原创文章,遵循 CC 4.0 by-sa 版权协议,转载请附上原文出处链接和本声明.本文链接:https://blog.csdn.net/qq_33862644/article/d ...

  5. Shell 编程 条件语句

    本篇主要写一些shell脚本条件语句的使用. 条件测试 test 条件表达式 [ 条件表达式 ] 文件测试 -d:测试是否为目录(Directory). -e:测试文件或目录是否存在(Exist). ...

  6. web服务器-apache

    一.apache详解 1. 概述 apache是世界上使用排名第一的web服务器软件.它可以运行在几乎所有广泛使用的计算机平台上,由于其跨平台和安全性被广泛使用,是最流行的web服务器端软件之一.它快 ...

  7. saltstack--状态判断unless与onlyif

    saltstack状态判断unless与onlyif 很多时候我们在编写 state 文件时候需要进行判断,判断该目录或文件是否存在,判断该配置是否已经已添加,然后根据判断结果再决定命令或动作是否执行 ...

  8. zabbix--微信告警

    zabbix 微信告警机制 zabbix 告警机制有很多,比如邮件.微信.电话.短信等等.很多,但是像电话和短信都是有钱人玩的,我们这些穷屌丝玩玩 微信 邮件 就可以了. 参考:https://git ...

  9. Object类.时间日期类.System类.Stringbuilder类.包装类

    Object类 java.lang.Object类是java语言中的根类,即所有类的父类.它中描述的所有方法都可以使用.在对象实例化的时候,最终找的父类就是Object. 如果一个类没有特别指定父类, ...

  10. HDU6592 Beauty Of Unimodal Sequence

    Beauty Of Unimodal Sequence 给一个序列,在满足单调递增或者单调递减或者先增后减的最长子序列集合里找到下标字典序最大以及最小的两个子序列,输出这两个子序列里元素的下标. n≤ ...