python mysql数据库压力测试
python mysql数据库压力测试
pymysql 的执行时间对比
1,装饰器,计算插入1000条数据需要的时间
def timer(func):
def decor(*args):
start_time = time.time()
func(*args)
end_time = time.time()
d_time = end_time - start_time
print("the running time is : ", d_time)
return decor @timer
def add_test_users(n):
conn = pymysql.connect(host='localhost' ,port=3306 ,user='root', password='1234qwer', db='test', charset='utf8')
cursor = conn.cursor()
for i in range(0, n):
try:
sql = "insert into students1(name, age, sex, id, cellphone,address,score)values(%s,%s,%s,%s,%s,%s,%s)"
param = (('Tom' + str(i), str(i), 'boy', str(10000 + i), str(1390000000+ i), 'shanghai', str(10 + i)))
cursor.execute(sql, param) except Exception as e:
return conn.commit()
cursor.close()
conn.close()
print('OK') add_test_users(10)
2,装饰器,计算插入100条数据需要的时间
def timer(func):
def decor(*args):
start_time = time.time()
func(*args)
end_time = time.time()
d_time = end_time - start_time
print("the running time is : ", d_time)
return decor @timer
def add_test_users(n):
usersvalues = []
for i in range(1, n):
usersvalues.append(('Tom' + str(i), str(i), 'boy', str(10000 + i), str(1390000000+ i), 'shanghai', str(10 + i)))
conn = pymysql.connect(host='localhost' ,port=3306 ,user='root', password='1234qwer', db='test', charset='utf8')
cursor = conn.cursor()
cursor.executemany('insert into students1(name, age, sex, id, cellphone,address,score)values(%s,%s,%s,%s,%s,%s,%s)', usersvalues) conn.commit()
cursor.close()
conn.close()
print('OK') add_test_users(10)
对比execute和executemany 的耗时对比:
conn = pymysql.connect(host='localhost', port=3306, user='root', password='1234qwer', db='test', charset='utf8')
cur = conn.cursor()
values = []
for i in range(10):
value = ('Tom' + str(i), str(i), 'boy', str(10000 + i), str(1390000000+ i), 'shanghai', str(10 + i))
values.append(value)
sql = "insert into students1(name, age, sex, id, cellphone,address,score)values(%s,%s,%s,%s,%s,%s,%s)"
now_time = time.time()
try:
cur.executemany(sql, values)
conn.commit()
except Exception as err:
print(err)
finally:
cur.close()
conn.close()
end_time = time.time()
print("executemany花费时间为: "+ str(end_time-now_time)) conn = pymysql.connect(host='localhost', port=3306, user='root', password='1234qwer', db='test', charset='utf8')
cur = conn.cursor()
values = []
for i in range(10):
value = ('Tom' + str(i), str(i), 'boy', str(10000 + i), str(1390000000+ i), 'shanghai', str(10 + i))
values.append(value)
sql = "insert into students1(name, age, sex, id, cellphone,address,score)values(%s,%s,%s,%s,%s,%s,%s)"
now_time = time.time()
for val in values:
print(val)
try:
cur.execute(sql, val)
conn.commit()
except Exception as err:
print(err)
finally:
cur.close()
conn.close()
end_time = time.time()
print("execute花费时间为: "+ str(end_time-now_time))
executemany花费时间为: 0.003998994827270508
execute花费时间为: 0.025983810424804688
Executemany 速度比execute快很多!!!
pymysql中 execute 和 executemany 性能对比 (外部文件导入)
conn = pymysql.connect(host='localhost', port=3306, user='root', password='1234qwer', db='test', charset='utf8')
cur = conn.cursor()
values = []
with open(r"C:\Users\Administrator\Desktop\students1.txt", "r+",encoding="utf-8") as fo:
while True:
line_txt = fo.readline().replace("\r","").replace("\n","")
if not line_txt:
break
line_txt_txts = line_txt.split(',')
values.append(line_txt_txts)
print(values) sql = "insert into students1(name, age, sex, id, cellphone,address,score)values(%s,%s,%s,%s,%s,%s,%s)"
now_time = time.time()
try:
cur.executemany(sql, values)
conn.commit()
except Exception as err:
print(err)
finally:
cur.close()
conn.close()
end_time = time.time()
print("executemany花费时间为: "+ str(end_time-now_time))
students2.txt 文件内容:
Tom1,20,boy,10001,13900000001,shanghai,91
Tom2,21,boy,10002,13900000002,shanghai,92
Tom3,22,boy,10003,13900000003,shanghai,93
Tom4,24,boy,10004,13900000004,shanghai,94
Tom5,25,girl,10005 ,13900000005,shanghai,95
Tom6,26,girl,10006 ,13900000006,shanghai,96
Tom7,27,girl,10007 ,13900000007,shanghai,97
Tom8,28,girl,10008 ,13900000008,shanghai,98
Tom9,29,boy,10009,13900000009,shanghai,99
Tom10,30,boy,10010,13900000010,shanghai,100
conn = pymysql.connect(host='localhost', port=3306, user='root', password='1234qwer', db='test', charset='utf8')
cur = conn.cursor()
values = []
with open(r"C:\Users\Administrator\Desktop\students1.txt", "r+",encoding="utf-8") as fo:
while True:
line_txt = fo.readline().replace("\r","").replace("\n","")
if not line_txt:
break
line_txt_txts = line_txt.split(',')
values.append(line_txt_txts)
print(values)
sql = "insert into students1(name, age, sex, id, cellphone,address,score)values(%s,%s,%s,%s,%s,%s,%s)"
now_time = time.time()
for val in values:
print(val)
try:
cur.execute(sql, val)
conn.commit()
except Exception as err:
print(err)
cur.close()
conn.close() end_time = time.time()
print("execute花费时间为: "+ str(end_time-now_time))
外部导入txt文件流
executemany花费时间为: 0.004998683929443359
execute花费时间为: 0.030979633331298828
python多线程执行mysql
简单方式开启多线程
Def run(sql):
pass sql = 'select * from students1 where score = 90'
t1 = threading.Thread(target=run, args=(sql,))
t2 = threading.Thread(target=run, args=(sql,))
t3 = threading.Thread(target=run, args=(sql,))
t1.start()
t2.start()
t3.start()
多线程运行时间
def add_del_update_search():
coon = pymysql.connect(host="localhost", port=3306, user="root", password="1234qwer", db="test", charset="utf8")
sql = "insert into students1(name, age, sex, id, cellphone,address,score)values(%s,%s,%s,%s,%s,%s,%s)"
param = ('tom555', '', 'boy', '', '', 'shanghai', '')
cursor = coon.cursor()
try:
count = cursor.execute(sql, param)
coon.commit()
print(count)
except Exception as e:
print(e)
coon.rollback()
cursor.close()
coon.close() start_time = time.time()
t1 = threading.Thread(target=add_del_update_search)
t2 = threading.Thread(target=add_del_update_search)
t3 = threading.Thread(target=add_del_update_search)
t1.start()
t2.start()
t3.start()
end_time = time.time()
d_time = end_time - start_time
print("多线程运行时间是 : ", str(d_time))
单线程运行时间
def add_del_update_search():
coon = pymysql.connect(host="localhost", port=3306, user="root", password="1234qwer", db="test", charset="utf8")
sql = "insert into students1(name, age, sex, id, cellphone,address,score)values(%s,%s,%s,%s,%s,%s,%s)"
param = ('tom555', '', 'boy', '', '', 'shanghai', '')
cursor = coon.cursor()
try:
count1 = cursor.execute(sql, param)
count2 = cursor.execute(sql, param)
count3 = cursor.execute(sql, param)
coon.commit()
print(count1)
print(count2)
print(count3)
except Exception as e:
print(e)
coon.rollback()
cursor.close()
coon.close() start_time = time.time()
add_del_update_search()
end_time = time.time()
d_time = end_time - start_time
print(“单线程运行时间是 : ", str(d_time))
单线程 for 循环操作数据库
def add_del_update_search (n):
coon = pymysql.connect(host="localhost", port=3306, user="root", password="1234qwer", db="test", charset="utf8")
sql = "insert into students1(name, age, sex, id, cellphone,address,score)values(%s,%s,%s,%s,%s,%s,%s)"
param = ('tom555', '', 'boy', '', '', 'shanghai', '')
cursor = coon.cursor()
for i in range(0, n):
try:
cursor.execute(sql, param)
coon.commit()
except Exception as e:
return
cursor.close()
coon.close() start_time = time.time()
add_del_update_search(100)
end_time = time.time()
d_time = end_time - start_time
print("单个线程运行时间是 : ", str(d_time))
多线程 for 循环操作数据库
def add_del_update_search():
coon = pymysql.connect(host="localhost", port=3306, user="root", password="1234qwer", db="test", charset="utf8")
sql = "insert into students1(name, age, sex, id, cellphone,address,score)values(%s,%s,%s,%s,%s,%s,%s)"
param = ('tom555', '', 'boy', '', '', 'shanghai', '')
cursor = coon.cursor()
try:
count = cursor.execute(sql, param)
coon.commit()
except Exception as e:
print(e)
coon.rollback()
cursor.close()
coon.close() start_time = time.time()
for i in range (100):
t = threading.Thread(target=add_del_update_search)
t.start() end_time = time.time()
d_time = end_time - start_time
print("多线程运行时间是 : ", str(d_time))
python mysql数据库压力测试的更多相关文章
- mysqlslap 一个MySQL数据库压力测试工具
在Xen/KVM虚拟化中,一般来说CPU.内存.网络I/O的虚拟化效率都非常高了,而磁盘I/O虚拟化效率较低,从而磁盘可能会是瓶颈.一般来说,数据库对磁盘I/O要求比较高的应用,可以衡量一下在客户机中 ...
- mysql之 mysql数据库压力测试工具(mysqlslap)
mysqlslap是从MySQL的5.1.4版开始就开始官方提供的压力测试工具.通过模拟多个并发客户端并发访问MySQL来执行压力测试,同时提供了较详细的SQL执行数据性能报告,并且能很好的对比多个存 ...
- mysql+mycat压力测试一例【转】
前言 有很多人担心生产系统上新东西的程序怕压力跟不上和稳定性不行,是的,大家都怕,所以领导要求做一次压力测试,我个人也觉得是有必要的. 如果按原理来说,mycat如果不做分片,纯粹只是代理的话,他所做 ...
- Jmeter--Mysql数据库压力测试
前提环境要求:首先下载合适的数据库驱动 传送门:https://mvnrepository.com/artifact/mysql/mysql-connector-java 将下载好的驱动放到Jmete ...
- [数据库]000 - 🍳Sysbench 数据库压力测试工具
000 - Sysbench 数据库压力测试工具 sysbench 是一个开源的.模块化的.跨平台的多线程性能测试工具,可以用来进行CPU.内存.磁盘I/O.线程.数据库的性能测试.目前支持的数据库有 ...
- 如何使用swingbench进行oracle数据库压力测试
如何使用swingbench进行oracle数据库压力测试 2014-10-06 08:09:02 标签:oracle 数据库压力测试 swingbench 原创作品,允许转载,转载时请务必以超链接形 ...
- python locust 进行压力测试
最近公司项目周期比较赶, 项目是软硬结合,在缺少硬件的情况下,通过接口模拟设备上下架和购买情况,并进行压力测试, 本次主要使用三个接口 分别是3个场景: 生成商品IP, 对商品进行上架, 消费者购买商 ...
- sysbench数据库压力测试
sysbench是一款压力测试工具,可以测试系统的硬件性能,也可以用来对数据库进行基准测试 wget https://github.com/akopytov/sysbench/archive/1.0. ...
- 关于oracle数据库压力测试
今天接到需求,需要对oracle数据库进行压力测试,就这几个字的需求. 然后查看了以下软件: 1.Benchmark Factory是一款专业的服务器性能测试工具,专为数据库测试和可扩展性测量而设计, ...
随机推荐
- 前端工程师拿到全新的 Mac 需要做哪些准备
最近苹果退出了新款 Mac,用了3年15款Pro之后,终于盼到18款的降价,于是含泪更新换代 但是每次换电脑,重装环境的好多东西记不清,于是记个笔记 一.终端 安装 zsh sh -c "$ ...
- Android-----RadioButton单选使用(实现简单温度转换)
废话少说,直接上代码: xml布局文件代码: <?xml version="1.0" encoding="utf-8"?> <LinearLa ...
- git的基本使用和多人协作合并管理
1.代码版本控制工具 git 分布式 svn 集中式 2.配置git 配置用户名以及邮箱账号,用于记录用户信息 git config --global user.name 'wudaxun' git ...
- Nexus6p手机root和安装xposed
进行root前需要两个前提条件 解锁OEM 进入开发者选项:设置-〉关于-〉一直点版本号会出现,usb调试打开 手机连接pc命令行输入: adb reboot bootloader 进入bootloa ...
- Vue 中 $nextTick() 的应用
Vue 在更新 DOM 时是异步执行的. 只要侦听到数据变化,Vue 将开启一个队列,并缓冲在同一事件循环中发生的所有数据变更.如果同一个 watcher 被多次触发,只会被推入到队列中一次.这种在缓 ...
- Go语言入门——interface
1.Go如何定义interface Go通过type声明一个接口,形如 type geometry interface { area() float64 perim() float64 } 和声明一个 ...
- ThinkPHP5中如何实现模板完全静态化
模板完全静态化,也就是通过模板完全生成纯静态的网页,相比动态页面和伪静态页面更安全更利于SEO访问更快.相比前二者各有利弊吧,现在稍微对这三种形式的优缺点对比一下,以及在ThinkPHP5项目中实现完 ...
- Pandas 之 DataFrame 常用操作
import numpy as np import pandas as pd This section will walk you(引导你) through the fundamental(基本的) ...
- Maven插件Jib配合Harbor生成Docker镜像
1 说明 Maven插件Jib暂不支持https的自签名,因此只能配置以Http的方式访问Harbor私有仓库 以下基于SpringBoot2.x进行配置 2 Maven配置 2.1 pom.xml中 ...
- .Net core 使用swagger进行Api管理
上次我们讲过如何在swagger上隐藏接口,众所周知,swagger是一个强大的api文档工具,可以帮助我们记录文档并且测试接口,也是一个可视化操作接口的工具. 那么如果我们写的接口非常多的时候怎么办 ...