BST的性质

树上每个节点上有个值,这个值叫关键码

每个节点的关键码大于其任意左侧子节点的关键码,小于其任意右节点的关键码。

显然一个BST的中序遍历就是关键码单调递增的节点序列

BST的建立

为了避免越界其实好像没卵用,减少边界情况的判定,一般在BST中额外插入一个关键码为INF和-INF的节点

const int N=1000000;
struct BST
{
int l,r;//l,r分别是左右孩子的编号
int val;//关键码
}a[N];
int tot,root,INF=1<<30;
int New(int val)
{
a[++tot].val=val;
return tot;
}
void build()
{
New(-INF),New(INF);
root=1,a[1].r=2;
}

BST的检索

在BST中检索是否存在关键码为val的节点

设p为根节点

1.若p的关键码等于\(val\),直接返回

2.若p的关键码大于\(val\)

​ (1)若\(p\)的左子节点为空,则不存在

​ (2)若\(p\)的左子节点不为空,则在p的左子树中递归检索

2.若p的关键码小于\(val\)

​ (1)若\(p\)的右子节点为空,则不存在

​ (2)若\(p\)的右子节点不为空,则在\(p\)的右子树中递归检索

int get(int p,int val)
{
if(p==0) return 0;
if(val==a[p].val) return p;
return val<a[p].val ? get(a[p].l,val) : get(a[p].r,val);
}

BST的插入

在BST中插入关键码为val的节点

与BST的检索的检索过程类似,这里就不在赘述

void insert(int &p,int val)
{
if(p==0)
{
p=New(val);
return ;
}
if(val==a[p].val) return;
val<a[p].val ? insert(a[p].l,val) : insert(a[p].r,val);
}

细心的读者应该发现了p是引用的,why?

因为这里父节点的l或r值会被更新

BST求前驱/后继

这里首先赘述一下什么是前驱和后继

后继:BST中关键码大于val的最小的

前驱:BST中关键码小于val的最大的

这里以求后继为例

初始化ans为正无穷关键码的那个节点的编号。然后在BST中检索val,检索过程中不断更新ans

检索完成后有三种可能的结果

1.没有找到\(val\),那么现在ans即为所求

2.找到了\(val\),但是关键码为val的节点p没有右子树,那ans即为所求

3.找到了\(val\),而且关键码为val的节点p有右子树,那么就要从p的右孩子一直向左找

因为教育局把sm.ms图床给封了所以图片上传不了,抱歉

int getnext(int val)
{
int ans=2,p=root;
while(p)
{
if(val==a[p].val)
{
if(a[p].r>0)
{
p=a[p].r;
while(a[p].l>0) p=a[p].l;
ans=p;
}
break;
}
if(a[p].val>val&&a[p].val<a[ans].val) ans=p;
p=val<a[p].val ? a[p].l : a[p].r;
}
return ans;
}

上面的代码是用的非递归,以后有时间可能会补上递归的

前驱同理,这里不再赘述。

BST的节点删除

从BST中删除关键码为val的节点

首先检索出关键码为val的节点p来

有以下几种情况

1.如果p的子节点个数小于\(2\),则直接删除掉\(p\),并令\(p\)的子节点替代\(p\)的位置,与\(p\)的父节点相连

2.\(p\)既有左子树又有右子树,那么就找出\(val\)的后继来,显然后继没有左子树,所以直接删除后继,然后让后继的右子树代替游记,然后让后继代替\(p\)

没法传图,抱歉*2

void remove(int &p,int val)
{
if(p==0) return ;
if(val==a[p].val)
{
if(a[p].l==0) p=a[p].r;
else if(a[p].r==0) p=a[p].l;
else
{
int next=a[p].r;
while(a[next].l>0) next=a[p].l;
remove(a[p].r,a[next].val);
a[next].l=a[p].l,a[next].r=a[p].r;
p=next;
}
return ;
}
if(val<a[p].val) remove(a[p].l,val);
else remove(a[p].r,val);
}

细心的读者可能发现了,上述代码只能处理没有重复的关键值的情况,其实处理重复的关键值也很简单,这需要记录一个\(cnt\)即可

struct BST
{
int l,r;//l,r分别是左右孩子的编号
int val;//关键码
int cnt;//计数器
}a[N];

其他操作不再赘述

复杂度

显然BST一次操作复杂度为\(O(log N)\)。

但是BST容易被有序数列卡成\(O(N)\)的,这时树就变成一条链了

这是就可以用平衡树解决.....以后或许会更一篇平衡树的博客(前提是我要学会)

参考《算法竞赛进阶指南》,代码未经测试不保证正确性,如有错误还望指正(狗头保命)

平衡树

浅谈fhq\ treap

浅谈BST(二叉查找树)的更多相关文章

  1. 浅谈算法和数据结构: 七 二叉查找树 八 平衡查找树之2-3树 九 平衡查找树之红黑树 十 平衡查找树之B树

    http://www.cnblogs.com/yangecnu/p/Introduce-Binary-Search-Tree.html 前文介绍了符号表的两种实现,无序链表和有序数组,无序链表在插入的 ...

  2. HTTP协议漫谈 C#实现图(Graph) C#实现二叉查找树 浅谈进程同步和互斥的概念 C#实现平衡多路查找树(B树)

    HTTP协议漫谈   简介 园子里已经有不少介绍HTTP的的好文章.对HTTP的一些细节介绍的比较好,所以本篇文章不会对HTTP的细节进行深究,而是从够高和更结构化的角度将HTTP协议的元素进行分类讲 ...

  3. 浅谈splay(点的操作)

    浅谈splay(点的操作) 一.基本概念 splay本质:二叉查找树 特点:结点x的左子树权值都小于x的权值,右子树权值都大于x的权值 维护信息: 整棵树:root 当前根节点  sz书上所有结点编号 ...

  4. 浅谈 Java集合

    Java 集合 集合是对象的容器,定义了多个对象进行操作的常用方法,可实现数组的功能. Java集合类库所处位置:java.util.*. 与现代的数据结构类库的常见做法一样,Java集合类库也将接口 ...

  5. 浅谈 Fragment 生命周期

    版权声明:本文为博主原创文章,未经博主允许不得转载. 微博:厉圣杰 源码:AndroidDemo/Fragment 文中如有纰漏,欢迎大家留言指出. Fragment 是在 Android 3.0 中 ...

  6. 浅谈 LayoutInflater

    浅谈 LayoutInflater 版权声明:本文为博主原创文章,未经博主允许不得转载. 微博:厉圣杰 源码:AndroidDemo/View 文中如有纰漏,欢迎大家留言指出. 在 Android 的 ...

  7. 浅谈Java的throw与throws

    转载:http://blog.csdn.net/luoweifu/article/details/10721543 我进行了一些加工,不是本人原创但比原博主要更完善~ 浅谈Java异常 以前虽然知道一 ...

  8. 浅谈SQL注入风险 - 一个Login拿下Server

    前两天,带着学生们学习了简单的ASP.NET MVC,通过ADO.NET方式连接数据库,实现增删改查. 可能有一部分学生提前预习过,在我写登录SQL的时候,他们鄙视我说:“老师你这SQL有注入,随便都 ...

  9. 浅谈WebService的版本兼容性设计

    在现在大型的项目或者软件开发中,一般都会有很多种终端, PC端比如Winform.WebForm,移动端,比如各种Native客户端(iOS, Android, WP),Html5等,我们要满足以上所 ...

随机推荐

  1. IDEA整合GIT所有操作

    IDEA整合GIT操作 1.1 配置Idea集成Git 1.2 在使用SSH key 创建公钥私钥,上传公钥到github (1).点击开始菜单-->所有程序--->git选择 Git B ...

  2. SourceTree 免登录

    SourceTree 是 Windows 和Mac OS X 下免费的 Git 和 Hg 客户端,拥有可视化界面,容易上手操作.同时它也是Mercurial和Subversion版本控制系统工具.支持 ...

  3. git 用 diff 来检查改动

    用 diff 来检查改动 项目的开发是由无数个微小的改动组成的.了解项目开发过程的关键就是要搞清楚每一个改动.当然你可以使用 “git status” 命令或更简单的 “git log” 命令来打印出 ...

  4. Java学习:JDK8的新特性

    Java学习:JDK8的新特性 一.十大特性 Lambda表达式 Stream函数式操作流元素集合 接口新增:默认方法与静态方法 方法引用,与Lambda表达式联合使用 引入重复注解 类型注解 最新的 ...

  5. com.fasterxml.jackson.core.JsonGenerationException: Can not write a field name, expecting a value异常

    springboot对象返回,一直报生成json异常,经过检查,发现是自己在做xss防护时对出参进行了json的处理(copy代码不可取,囧) 异常信息 这里进行了出参处理了,但实际上只要对入参处理就 ...

  6. 第一次有人把 5G 讲的这么简单明了

    一个简单且神奇的公式    今天的故事,从一个公式开始讲起.这是一个既简单又神奇的公式.说它简单,是因为它一共只有 3 个字母.而说它神奇,是因为这个公式蕴含了博大精深的通信技术奥秘,这个星球上有无数 ...

  7. Android 常用炫酷控件(开源项目)git地址汇总

    第一部分 个性化控件(View) 主要介绍那些不错个性化的 View,包括 ListView.ActionBar.Menu.ViewPager.Gallery.GridView.ImageView.P ...

  8. Python连接MongoDB数据库并执行操作

    原文:https://blog.51cto.com/1767340368/2092813 环境设置: [root@mongodb ~]# cat /etc/redhat-release CentOS ...

  9. 在AWS中自定义Credential Provider实现Client连接

    今天在使用AWS中,由于原来的 key和secrect是放在配置文件ini里面的.现在需要改成从DB里面获取,所以需要自定义Credential.在AWS中重写这个挺简单的. 我这里是继承原先的Cre ...

  10. 架构师小跟班:教你从零开始申请和配置七牛云免费OSS对象存储(不能再详细了)

    背景 之前为了练习Linux系统使用,在阿里云上低价买了一台服务器(网站首页有活动链接,传送门),心里想反正闲着也是闲着,就放了一个网站上去.现在随着数据越来越多,服务器空间越来越吃紧,我就考虑使用七 ...