小K的农场


题目描述 小K在MC里面建立很多很多的农场,总共n个,以至于他自己都忘记了每个农场中种植作物的具体数量了,他只记得一些含糊的信息(共m个),以下列三种形式描述:
农场a比农场b至少多种植了c个单位的作物,
农场a比农场b至多多种植了c个单位的作物,
农场a与农场b种植的作物数一样多。
但是,由于小K的记忆有些偏差,所以他想要知道存不存在一种情况,使得农场的种植作物数量与他记忆中的所有信息吻合。
输入输出格式
输入格式: 第一行包括两个整数 n 和 m,分别表示农场数目和小 K 记忆中的信息数目。 接下来 m 行: 如果每行的第一个数是 1,接下来有 3 个整数 a,b,c,表示农场 a 比农场 b 至少多种植了 c 个单位的作物。 如果每行的第一个数是 2,接下来有 3 个整数 a,b,c,表示农场 a 比农场 b 至多多种植了 c 个单位的作物。如果每行的第一个数是 3,接下来有 2 个整数 a,b,表示农场 a 种植的的数量和 b 一样多。 输出格式: 如果存在某种情况与小 K 的记忆吻合,输出“Yes”,否则输出“No”。 输入输出样例
输入样例#1: 3 3
3 1 2
1 1 3 1
2 2 3 2 输出样例#1:
Yes 说明 对于 100% 的数据保证:1 ≤ n,m,a,b,c ≤ 10000。

差分约束可以求解最短路和最长路。这道题也是差分约束的模板题。

根据:

 农场a比农场b至少多种植了c个单位的作物,
农场a比农场b至多多种植了c个单位的作物,
农场a与农场b种植的作物数一样多。

建立条件。

由题可知,农场a比农场b至少多种植了c个单位的作物,所以Xa-Xb>=cXb-Xa<=-c, 农场a比农场b至多多种植了c个单位的作物,所以Xa-Xb<=c,农场a与农场b种植的作物数一样多,所以Xa==Xb,则Xa-Xb<=cXb-Xa<=c

然后用SPFA。(不要连错了权值)

#include<bits/stdc++.h>
using namespace std; const int maxn=11000;
const int inf=0x3f3f3f3f; int n,m; struct node{
int v,w;
node(){ }
node(int _v,int _w){
v=_v;
w=_w;
}
}; vector <node> g[maxn];
int dst[maxn];
queue <int> qu;
bool inq[maxn];
int cnt[maxn]; int add(int u,int v,int w){
g[u].push_back(node(v,w));
} bool spfa(int u){
memset(dst,inf,sizeof dst);
// memset(cnt,0,sizeof cnt);
dst[u]=0;
qu.push(u);
inq[u]=1;
while(!qu.empty()){
u=qu.front();
qu.pop();
inq[u]=0;
for(int i=0;i<g[u].size();i++){
int v=g[u][i].v;
int w=g[u][i].w;
if(dst[v]>dst[u]+w){
dst[v]=dst[u]+w;
if(!inq[v]){
qu.push(v);
inq[v]=1;
cnt[v]++;
if(cnt[v]>n){
return 0;
}
}
}
}
}
return 1;
} int main(){
cin >> n >> m;
for(int i=1;i<=n;i++){
add(0,i,0);
}
for(int i=0;i<m;i++){
int d,a,b,c;
cin >> d;
if(d==1){
cin >>a>>b>>c;
g[a].push_back(node(b,-c));
}else if(d==2){
cin >>a>>b>>c;
g[b].push_back(node(a,c));
}else{
cin >>a>>b;
g[a].push_back(node(b,0));
g[b].push_back(node(a,0));
}
} if(spfa(0)){
cout << "Yes";
}else{
cout << "No";
}
return 0;
}

但实际上,它只能得到60分。四组TLE。。。

于是,就涉及到另外一个数据结构,双向队列。双向队列有队列和栈的性质。可以从两端入队,弹出。在这道题里,我们用if判断,在队列后端放入较大的值,前端放入较小的值分别用back和front访问最后一个元素和第一个元素。

#include<bits/stdc++.h>
using namespace std; const int maxn=11000;
const int inf=0x3f3f3f3f; int n,m; struct node{
int v,w;
node(){ }
node(int _v,int _w){
v=_v;
w=_w;
}
}; vector <node> g[maxn];
int dst[maxn];
deque<int> qu;//双向队列
bool inq[maxn];
int cnt[maxn]; int add(int u,int v,int w){
g[u].push_back(node(v,w));
} bool spfa(int u){
memset(dst,inf,sizeof dst);//初始化
// memset(cnt,0,sizeof cnt);
dst[u]=0;
qu.push_back(u);//双向队列的访问最后一个元素写法
inq[u]=1;
while(!qu.empty()){
u=qu.front();//双向队列的访问第一个元素写法
qu.pop_front();
if(dst[qu.front()]>dst[qu.back()]){
swap(qu.front(),qu.back());//交换
}
inq[u]=0;
for(int i=0;i<g[u].size();i++){
int v=g[u][i].v;
int w=g[u][i].w;
if(dst[v]>dst[u]+w){
dst[v]=dst[u]+w;
if(!inq[v]){
if(dst[v]<dst[qu.front()]){//判断,比较大小
qu.push_front(v);//插入队首
}else{
qu.push_back(v);//插入队尾
}
inq[v]=1;
cnt[v]++;
if(cnt[v]>n){
return 0;
}
}
}
}
}
return 1;
} int main(){
cin >> n >> m;
for(int i=1;i<=n;i++){
add(0,i,0);
}
for(int i=0;i<m;i++){
int d,a,b,c;
cin >> d;
if(d==1){//连权值
cin >>a>>b>>c;
g[a].push_back(node(b,-c));
}else if(d==2){
cin >>a>>b>>c;
g[b].push_back(node(a,c));
}else{
cin >>a>>b;
g[a].push_back(node(b,0));
g[b].push_back(node(a,0));
}
} if(spfa(0)){
cout << "Yes";
}else{
cout << "No";
}
return 0;
}

P1993 小K的农场(差分约束)的更多相关文章

  1. P1993 小K的农场 && 差分约束

    首先第一篇讨论的是差分约束系统解的存在 差分约束系统是有 \(n\) 个变量及 \(m\) 个(如 \(x_{i} - x_{j} \leq a_{k}\) )关系组成的系统 差分约束解的求解可以转化 ...

  2. 洛谷P1993 小K的农场 [差分约束系统]

    题目传送门 小K的农场 题目描述 小K在MC里面建立很多很多的农场,总共n个,以至于他自己都忘记了每个农场中种植作物的具体数量了,他只记得一些含糊的信息(共m个),以下列三种形式描述: 农场a比农场b ...

  3. 【BZOJ3436】小K的农场 差分约束

    [BZOJ3436]小K的农场 Description 背景 小K是个特么喜欢玩MC的孩纸... 描述 小K在MC里面建立很多很多的农场,总共n个,以至于他自己都忘记了每个农场中种植作物的具体数量了, ...

  4. P1993 小K的农场 差分约束系统

    这个题是一道差分约束系统的裸题,什么是差分约束系统呢?就是给了一些大小条件,然后让你找一个满足的图.这时就要用差分约束了. 怎么做呢?其实很简单,就是直接建图就好,但是要把所有条件变为小于等于号,假如 ...

  5. 小K的农场 差分约束

    题目描述 小K在MC里面建立很多很多的农场,总共n个,以至于他自己都忘记了每个农场中种植作物的具体数量了,他只记得一些含糊的信息(共m个),以下列三种形式描述: 农场a比农场b至少多种植了c个单位的作 ...

  6. BZOJ 3436: 小K的农场 差分约束

    题目链接: http://www.lydsy.com/JudgeOnline/problem.php?id=3436 题解: 裸的差分约束: 1.a>=b+c  ->  b<=a-c ...

  7. P1993 小K的农场

    P1993 小K的农场比较裸的差分约束,只是我判负环的时候sb了... 有负环意味着无解 #include<iostream> #include<cstdio> #includ ...

  8. 洛谷 P1993 小K的农场 解题报告

    P1993 小K的农场 题目描述 小K在MC里面建立很多很多的农场,总共n个,以至于他自己都忘记了每个农场中种植作物的具体数量了,他只记得一些含糊的信息(共m个),以下列三种形式描述: 农场a比农场b ...

  9. 洛谷 P1993 小K的农场

    P1993 小K的农场 题目描述 小K在MC里面建立很多很多的农场,总共n个,以至于他自己都忘记了每个农场中种植作物的具体数量了,他只记得一些含糊的信息(共m个),以下列三种形式描述: 农场a比农场b ...

随机推荐

  1. x32下逆向 PsSetCreateProcessNotifyRoutine 进程钩子

    目录 一丶前言 二丶逆向过程 1.windbg挂载 win7 32位.定位到函数反汇编位置 2.逆向 PspSetCreateProcessNotifyRoutine 3.逆向 ExReference ...

  2. 常用命令备忘 xargs

    xargs 作为使用率很高的命令,但是长久不用就会模糊了记忆,所以要记录下来. 获取所有的cobbler相关的布尔值然后全部设置为真 getsebool -a|grep cobbler|awk '{p ...

  3. Java8 拼接字符串 StringJoiner

    StringJoiner1.简单的字符串拼接 输出:HelloWorld 注:当我们使用StringJoiner(CharSequence delimiter)初始化一个StringJoiner的时候 ...

  4. PostgreSQL 增量备份详解以及相关示例

    PostgreSQL 没有类似MySQL 的二进制日志, 但是有和MySQL 类似的REDO LOG,并且有MySQL 没有的REDO 归档功能.当然REDO 的归档已经MariaDB 和Percon ...

  5. [转] FileZilla Server超详细配置

    FileZilla Server下载安装完成后,必须启动软件进行设置,由于此软件是英文,本来就是一款陌生的软件,再加上英文(注:本站提供中文版本,请点击下载),配置难度可想而知,站长从网上找到一篇非常 ...

  6. Page directive: invalid value for import

    原有项目启动正常,正常访问:后来换成tomcat7.0.70:后启动正常,登陆正常,然而点进去任何菜单都会报错: java.lang.IllegalArgumentException: Page di ...

  7. laravel修改了配置文件不生效,修改了数据库配置文件不生效

    Laravel缓存配置文件,因此您可能只需要清除缓存: php artisan config:clear 转: http://www.voidcn.com/article/p-sgcusrjp-bxw ...

  8. GPS 经纬度

      经纬度地图: http://www.gpsspg.com/maps.htm http://www.gzhatu.com/dingwei.html 经纬度格式转化 http://www.gzhatu ...

  9. 每个Web开发者都需要具备的9个软技能--ZT

    本文原始链接:http://www.cnblogs.com/oooweb/p/soft-skills-every-web-developer-should-master.html 对于一份工作,你可能 ...

  10. C++模板编程中只特化模板类的一个成员函数(花样特化一个成员函数)

    转自:https://www.cnblogs.com/zhoug2020/p/6581477.html 模板编程中如果要特化或偏特化(局部特化)一个类模板,需要特化该类模板的所有成员函数.类模板中大多 ...