In this problem, a rooted tree is a directed graph such that, there is exactly one node (the root) for which all other nodes are descendants of this node, plus every node has exactly one parent, except for the root node which has no parents.

The given input is a directed graph that started as a rooted tree with N nodes (with distinct values 1, 2, ..., N), with one additional directed edge added. The added edge has two different vertices chosen from 1 to N, and was not an edge that already existed.

The resulting graph is given as a 2D-array of edges. Each element of edges is a pair [u, v] that represents a directed edge connecting nodes u and v, where u is a parent of child v.

Return an edge that can be removed so that the resulting graph is a rooted tree of N nodes. If there are multiple answers, return the answer that occurs last in the given 2D-array.

Example 1:

Input: [[1,2], [1,3], [2,3]]
Output: [2,3]
Explanation: The given directed graph will be like this:
1
/ \
v v
2-->3 

Example 2:

Input: [[1,2], [2,3], [3,4], [4,1], [1,5]]
Output: [4,1]
Explanation: The given directed graph will be like this:
5 <- 1 -> 2
^ |
| v
4 <- 3

Note:

  • The size of the input 2D-array will be between 3 and 1000.
  • Every integer represented in the 2D-array will be between 1 and N, where N is the size of the input array.

684. Redundant Connection 的拓展,684题给的是无向图,只需要删掉组成环的最后一条边即可,检测环就行了。这题给的是有向图,就复杂多了,有多种情况存在,比如例子1就是无环,但是有入度为2的结点3。再比如例子2是有环,但是没有入度为2的结点。还有一种情况例子没有给出,就是既有环,又有入度为2的结点。

解法:Union find

There are two cases for the tree structure to be invalid.
1) A node having two parents;
including corner case: e.g. [[4,2],[1,5],[5,2],[5,3],[2,4]]
2) A circle exists

If we can remove exactly 1 edge to achieve the tree structure, a single node can have at most two parents.

1) Check whether there is a node having two parents.
If so, store them as candidates A and B, and set the second edge invalid.
2) Perform normal union find.

If the tree is now valid
    simply return candidate B
else if candidates not existing
    we find a circle, return current edge;
else
    remove candidate A instead of B.

Java:

class Solution {
public int[] findRedundantDirectedConnection(int[][] edges) {
int[] can1 = {-1, -1};
int[] can2 = {-1, -1};
int[] parent = new int[edges.length + 1];
for (int i = 0; i < edges.length; i++) {
if (parent[edges[i][1]] == 0) {
parent[edges[i][1]] = edges[i][0];
} else {
can2 = new int[] {edges[i][0], edges[i][1]};
can1 = new int[] {parent[edges[i][1]], edges[i][1]};
edges[i][1] = 0;
}
}
for (int i = 0; i < edges.length; i++) {
parent[i] = i;
}
for (int i = 0; i < edges.length; i++) {
if (edges[i][1] == 0) {
continue;
}
int child = edges[i][1], father = edges[i][0];
if (root(parent, father) == child) {
if (can1[0] == -1) {
return edges[i];
}
return can1;
}
parent[child] = father;
}
return can2;
} int root(int[] parent, int i) {
while (i != parent[i]) {
parent[i] = parent[parent[i]];
i = parent[i];
}
return i;
}
}

Python:

# Time:  O(nlog*n) ~= O(n), n is the length of the positions
# Space: O(n)
class UnionFind(object):
def __init__(self, n):
self.set = range(n)
self.count = n def find_set(self, x):
if self.set[x] != x:
self.set[x] = self.find_set(self.set[x]) # path compression.
return self.set[x] def union_set(self, x, y):
x_root, y_root = map(self.find_set, (x, y))
if x_root == y_root or \
y != y_root: # already has a father
return False
self.set[y_root] = x_root
self.count -= 1
return True class Solution(object):
def findRedundantDirectedConnection(self, edges):
"""
:type edges: List[List[int]]
:rtype: List[int]
"""
union_find = UnionFind(len(edges)+1)
for edge in edges:
if not union_find.union_set(*edge):
return edge
return []  

C++:

class Solution {
public:
vector<int> findRedundantDirectedConnection(vector<vector<int>>& edges) {
int n = edges.size();
vector<int> parent(n+1, 0), candA, candB;
// step 1, check whether there is a node with two parents
for (auto &edge:edges) {
if (parent[edge[1]] == 0)
parent[edge[1]] = edge[0];
else {
candA = {parent[edge[1]], edge[1]};
candB = edge;
edge[1] = 0;
}
}
// step 2, union find
for (int i = 1; i <= n; i++) parent[i] = i;
for (auto &edge:edges) {
if (edge[1] == 0) continue;
int u = edge[0], v = edge[1], pu = root(parent, u);
// Now every node only has 1 parent, so root of v is implicitly v
if (pu == v) {
if (candA.empty()) return edge;
return candA;
}
parent[v] = pu;
}
return candB;
}
private:
int root(vector<int>& parent, int k) {
if (parent[k] != k)
parent[k] = root(parent, parent[k]);
return parent[k];
}
};

 

类似题目:

[LeetCode] 684. Redundant Connection 冗余的连接

All LeetCode Questions List 题目汇总

[LeetCode] 685. Redundant Connection II 冗余的连接之 II的更多相关文章

  1. [LeetCode] 685. Redundant Connection II 冗余的连接之二

    In this problem, a rooted tree is a directed graph such that, there is exactly one node (the root) f ...

  2. LeetCode 685. Redundant Connection II

    原题链接在这里:https://leetcode.com/problems/redundant-connection-ii/ 题目: In this problem, a rooted tree is ...

  3. [LeetCode] Redundant Connection II 冗余的连接之二

    In this problem, a rooted tree is a directed graph such that, there is exactly one node (the root) f ...

  4. [LeetCode] 684. Redundant Connection 冗余的连接

    In this problem, a tree is an undirected graph that is connected and has no cycles. The given input ...

  5. LN : leetcode 684 Redundant Connection

    lc 684 Redundant Connection 684 Redundant Connection In this problem, a tree is an undirected graph ...

  6. LeetCode 684. Redundant Connection 冗余连接(C++/Java)

    题目: In this problem, a tree is an undirected graph that is connected and has no cycles. The given in ...

  7. leetcode 684. Redundant Connection

    We are given a "tree" in the form of a 2D-array, with distinct values for each node. In th ...

  8. Leetcode之并查集专题-684. 冗余连接(Redundant Connection)

    Leetcode之并查集专题-684. 冗余连接(Redundant Connection) 在本问题中, 树指的是一个连通且无环的无向图. 输入一个图,该图由一个有着N个节点 (节点值不重复1, 2 ...

  9. [LeetCode] Redundant Connection 冗余的连接

    In this problem, a tree is an undirected graph that is connected and has no cycles. The given input ...

随机推荐

  1. docker学习1-CentOS 7安装docker环境

    前言 Docker 提供轻量的虚拟化,你能够从Docker获得一个额外抽象层,你能够在单台机器上运行多个Docker微容器,而每个微容器里都有一个微服务或独立应用,例如你可以将Tomcat运行在一个D ...

  2. [转] C++ explicit关键字详解

    本文转自tiankong19999 首先, C++中的explicit关键字只能用于修饰只有一个参数的类构造函数, 它的作用是表明该构造函数是显示的, 而非隐式的, 跟它相对应的另一个关键字是impl ...

  3. eclipse正常启动,debug无法启动,解决办法

  4. hive中执行hql或建表语句时,抛出Display all 459 possibilities? (y or n)错误的解决方法

    我昨天在hive上建表,一直报Display all 459 possibilities? (y or n) ,之前我以为是建表语句有问题,一直在改语句,后来在网上搜这个错误,原来语句里混杂了Tab缩 ...

  5. mysql数据库的concat(),group_concat(),concat_ws()函数,三者之间的比较

    今天在写项目的时候,看到同事使用group_concat()函数 和concat_ws()函数,这两个函数和普通的concat()函数之间到底有什么不同. 我使用的数据库是mysql数据库. GROU ...

  6. XA 事务

    4.11.3 什么是XA 事务? <数据库程序员面试笔试宝典>第4章数据库基础,本章主要介绍数据库基础部分的面试题,比较适合应届毕业生,也适合由其他岗位转数据库岗位的人员.本节为大家介绍什 ...

  7. Call to undefined function imagecreatefromjpeg() 让GD支持JPEG格式的图片扩展

    安装扩展支持jpeg格式: 第一步:首先下载文件: 版本v8: wget http://www.ijg.org/files/jpegsrc.v8b.tar.gz 版本v9: wget http://w ...

  8. WAMP 3.1.0 APACHE 2.4.27 从外网访问

    想测试一下从外网访问自己的电脑,找了一圈,网上教程都是修改APACHE 的 httpd.conf,经过1小时的摸索,发现完全不对. 正真的方法是修改httpd-vhost.conf,需要修改2处: 1 ...

  9. GoCN每日新闻(2019-10-16)

    GoCN每日新闻(2019-10-16) GoCN每日新闻(2019-10-16) 1. 持续的性能分析与优化 https://medium.com/@tvii/continuous-profilin ...

  10. inotify 监控文件系统操作

    path0=path1=########################################################dir2watch1=/home/nanjing2/GridON ...