[LeetCode] 313. Super Ugly Number 超级丑陋数
Write a program to find the nth
super ugly number.
Super ugly numbers are positive numbers whose all prime factors are in the given prime list primes
of size k
.
Example:
Input: n = 12,primes
=[2,7,13,19]
Output: 32
Explanation:[1,2,4,7,8,13,14,16,19,26,28,32]
is the sequence of the first 12
super ugly numbers givenprimes
=[2,7,13,19]
of size 4.
Note:
1
is a super ugly number for any givenprimes
.- The given numbers in
primes
are in ascending order. - 0 <
k
≤ 100, 0 <n
≤ 106, 0 <primes[i]
< 1000. - The nth super ugly number is guaranteed to fit in a 32-bit signed integer.
264. Ugly Number II 的拓展,还是找出第n个丑陋数,但质数集合不在只是2,3,5,而是可以任意给定。难度增加了,但本质上和Ugly Number II 没有什么区别,由于不知道质数的个数,可以用一个idx数组来保存当前的位置,然后从每个子链中取出一个数,找出其中最小值,然后更新idx数组对应位置,注意有可能最小值不止一个,要更新所有最小值的位置。
解题思路:
要使得super ugly number不漏掉,那么需要使用每个因子去乘以其对应的“第一个”丑数。那么何为对应的“第一个”丑数?
首先,利用ugly[]数组来保存所有的超级丑数,ugly[i]表示第i+1个超级丑数;
接着利用pointer[]数组来表示每个因子对应的“第一个”丑数的下标。pointer数组长度当然需要和primes长度一致,且初始化为0,代表着每个因子对应的“第一个”丑数都是ugly[0];
接下来我们以primes[2,7,13,19],pointer[0,0,0,0],ugly[0]=1作为初始条件往下看:
遍历primes数组,用每个因子都乘以其对应的第一个丑数,即ugly[0]=1,可以发现1x2=2是最小值,故ugly[1]=2;但要注意,此时的pointer数组发生了变化:
由于当前产生的丑数2是由2这个因子乘以它的对应“第一个”丑数得到的,因此需要将pointer[0]加一。pointer[0]是2这个因子对应的“第一个”丑数的下标,因为当前已经使用了2x1,如果不更新,则下一轮还是会用2这个因子去乘以第一个丑数(ugly[0]).将其更新后,则意味着2这个因子对应的第一个丑数已经改变了,变成了ugly[1].而其他三个对应的“第一个”丑数还是ugly[0]。
我们接着看下一轮:2x2【即ugly[pointer[1]]x2】,1x7,1x13,1x19,发现还是2这个因子得到的数最小,故更新:ugly[2]=2x2=4,pointer[0]=2;
下一轮:4x2,1x7,1x13,1x19,可以发现当前这一轮最小值是7,且由因子7产生,故更新:ugly[3]=7,pointer[1]=1;
以此类推....
如果更新过程中,出现最小值不止一个的话,则其对应的pointer的值都需要增加1。
Java:
public int nthSuperUglyNumber(int n, int[] primes) {
int[] ugly = new int[n+1];
ugly[0]=1;
int[] pointer = new int[primes.length];
for(int i=1;i<n;i++) {
int min=Integer.MAX_VALUE;
int minIndex = 0;
for(int j=0;j<primes.length;j++) {
if(ugly[pointer[j]]*primes[j]<min) {
min=ugly[pointer[j]]*primes[j];
minIndex = j;
}else if(ugly[pointer[j]]*primes[j]==min) {
pointer[j]++;
}
}
ugly[i]=min;
pointer[minIndex]++;
}
return ugly[n-1];
}
Java:1
public int nthSuperUglyNumberI(int n, int[] primes) {
int[] ugly = new int[n];
int[] idx = new int[primes.length]; ugly[0] = 1;
for (int i = 1; i < n; i++) {
//find next
ugly[i] = Integer.MAX_VALUE;
for (int j = 0; j < primes.length; j++)
ugly[i] = Math.min(ugly[i], primes[j] * ugly[idx[j]]); //slip duplicate
for (int j = 0; j < primes.length; j++) {
while (primes[j] * ugly[idx[j]] <= ugly[i]) idx[j]++;
}
} return ugly[n - 1];
}
Java:2
public int nthSuperUglyNumber(int n, int[] primes) {
int[] ugly = new int[n];
int[] idx = new int[primes.length];
int[] val = new int[primes.length];
Arrays.fill(val, 1); int next = 1;
for (int i = 0; i < n; i++) {
ugly[i] = next; next = Integer.MAX_VALUE;
for (int j = 0; j < primes.length; j++) {
//skip duplicate and avoid extra multiplication
if (val[j] == ugly[i]) val[j] = ugly[idx[j]++] * primes[j];
//find next ugly number
next = Math.min(next, val[j]);
}
} return ugly[n - 1];
}
Java: 3 index heap
public int nthSuperUglyNumberHeap(int n, int[] primes) {
int[] ugly = new int[n]; PriorityQueue<Num> pq = new PriorityQueue<>();
for (int i = 0; i < primes.length; i++) pq.add(new Num(primes[i], 1, primes[i]));
ugly[0] = 1; for (int i = 1; i < n; i++) {
ugly[i] = pq.peek().val;
while (pq.peek().val == ugly[i]) {
Num nxt = pq.poll();
pq.add(new Num(nxt.p * ugly[nxt.idx], nxt.idx + 1, nxt.p));
}
} return ugly[n - 1];
} private class Num implements Comparable<Num> {
int val;
int idx;
int p; public Num(int val, int idx, int p) {
this.val = val;
this.idx = idx;
this.p = p;
} @Override
public int compareTo(Num that) {
return this.val - that.val;
}
}
Python:
def nthSuperUglyNumber(self, n, primes):
ugly = [1]
pointers = [0]*len(primes) for i in range(1,n):
minu = float("inf")
minIndex = 0
for j in range(len(primes)):
if primes[j] * ugly[pointers[j]] < minu:
minu = primes[j] * ugly[pointers[j]]
minIndex = j
elif primes[j] * ugly[pointers[j]] == minu:
pointers[j] += 1
ugly.append(minu)
pointers[minIndex] += 1
return ugly[-1]
Python:
# Heap solution. (620ms)
class Solution(object):
def nthSuperUglyNumber(self, n, primes):
"""
:type n: int
:type primes: List[int]
:rtype: int
"""
heap, uglies, idx, ugly_by_last_prime = [], [0] * n, [0] * len(primes), [0] * n
uglies[0] = 1 for k, p in enumerate(primes):
heapq.heappush(heap, (p, k)) for i in xrange(1, n):
uglies[i], k = heapq.heappop(heap)
ugly_by_last_prime[i] = k
idx[k] += 1
while ugly_by_last_prime[idx[k]] > k:
idx[k] += 1
heapq.heappush(heap, (primes[k] * uglies[idx[k]], k)) return uglies[-1]
Python:
# Time: O(n * k)
# Space: O(n + k)
# Hash solution. (932ms)
class Solution2(object):
def nthSuperUglyNumber(self, n, primes):
"""
:type n: int
:type primes: List[int]
:rtype: int
"""
uglies, idx, heap, ugly_set = [0] * n, [0] * len(primes), [], set([1])
uglies[0] = 1 for k, p in enumerate(primes):
heapq.heappush(heap, (p, k))
ugly_set.add(p) for i in xrange(1, n):
uglies[i], k = heapq.heappop(heap)
while (primes[k] * uglies[idx[k]]) in ugly_set:
idx[k] += 1
heapq.heappush(heap, (primes[k] * uglies[idx[k]], k))
ugly_set.add(primes[k] * uglies[idx[k]]) return uglies[-1]
Python:
# Time: O(n * logk) ~ O(n * klogk)
# Space: O(n + k)
class Solution3(object):
def nthSuperUglyNumber(self, n, primes):
"""
:type n: int
:type primes: List[int]
:rtype: int
"""
uglies, idx, heap = [1], [0] * len(primes), []
for k, p in enumerate(primes):
heapq.heappush(heap, (p, k)) for i in xrange(1, n):
min_val, k = heap[0]
uglies += [min_val] while heap[0][0] == min_val: # worst time: O(klogk)
min_val, k = heapq.heappop(heap)
idx[k] += 1
heapq.heappush(heap, (primes[k] * uglies[idx[k]], k)) return uglies[-1]
C++:
class Solution {
public:
int nthSuperUglyNumber(int n, vector<int>& primes) {
vector<int> res(1, 1), idx(primes.size(), 0);
while (res.size() < n) {
vector<int> tmp;
int mn = INT_MAX;
for (int i = 0; i < primes.size(); ++i) {
tmp.push_back(res[idx[i]] * primes[i]);
}
for (int i = 0; i < primes.size(); ++i) {
mn = min(mn, tmp[i]);
}
for (int i = 0; i < primes.size(); ++i) {
if (mn == tmp[i]) ++idx[i];
}
res.push_back(mn);
}
return res.back();
}
};
C++:
class Solution {
public:
int nthSuperUglyNumber(int n, vector<int>& primes) {
vector<int> dp(n, 1), idx(primes.size(), 0);
for (int i = 1; i < n; ++i) {
dp[i] = INT_MAX;
for (int j = 0; j < primes.size(); ++j) {
dp[i] = min(dp[i], dp[idx[j]] * primes[j]);
}
for (int j = 0; j < primes.size(); ++j) {
if (dp[i] == dp[idx[j]] * primes[j]) {
++idx[j];
}
}
}
return dp.back();
}
};
类似题目:
[LeetCode] 263. Ugly Number 丑陋数
[LeetCode] 264. Ugly Number II 丑陋数 II
All LeetCode Questions List 题目汇总
[LeetCode] 313. Super Ugly Number 超级丑陋数的更多相关文章
- [LeetCode]313. Super Ugly Number超级丑数,丑数系列看这一道就行了
丑数系列的题看这一道就可以了 /* 和ugly number2差不多,不过这次的质因子多了,所以用数组来表示质因子的target坐标 target坐标指的是这个质因子此次要乘的前任丑数是谁 */ pu ...
- [LeetCode] Super Ugly Number 超级丑陋数
Write a program to find the nth super ugly number. Super ugly numbers are positive numbers whose all ...
- [LintCode] Super Ugly Number 超级丑陋数
Write a program to find the nth super ugly number. Super ugly numbers are positive numbers whose all ...
- 313 Super Ugly Number 超级丑数
编写一段程序来寻找第 n 个超级丑数.超级丑数是指其所有质因数都在长度为k的质数列表primes中的正整数.例如,[1, 2, 4, 7, 8, 13, 14, 16, 19, 26, 28, 32] ...
- Leetcode 313. super ugly number
Write a program to find the nth super ugly number. Super ugly numbers are positive numbers whose all ...
- [LeetCode] 264. Ugly Number II 丑陋数 II
Write a program to find the n-th ugly number. Ugly numbers are positive numbers whose prime factors ...
- leetcode 263. Ugly Number 、264. Ugly Number II 、313. Super Ugly Number 、204. Count Primes
263. Ugly Number 注意:1.小于等于0都不属于丑数 2.while循环的判断不是num >= 0, 而是能被2 .3.5整除,即能被整除才去除这些数 class Solution ...
- [LeetCode] Ugly Number II 丑陋数之二
Write a program to find the n-th ugly number. Ugly numbers are positive numbers whose prime factors ...
- [LeetCode] 264. Ugly Number II 丑陋数之二
Write a program to find the n-th ugly number. Ugly numbers are positive numbers whose prime factors ...
随机推荐
- java基础(14)---修饰符
修饰符:final .static.public.protected.private.default. 一.final(不能修改) 使用final修饰变量定义:该变量一旦被初始化之后就不允许再被修改. ...
- 微信小程序~扫码
为了让用户减少输入,我们可以把复杂的信息编码成一个二维码,利用宿主环境wx.scanCode这个API调起微信扫一扫,用户扫码之后,wx.scanCode的success回调会收到这个二维码所对应的字 ...
- .NET下各种可用的HTML解析组件
做数据抓取,网络爬虫方面的开发,自然少不了解析HTML源码的操作.那么问题来了,到底.NET如何来解析HTML,有哪些解析HTML源码的好用的,有效的组件呢? 作者在开始做这方面开发的时候就被这些 ...
- 微信小程序——选择某个区间的数字
很久没有更新文章啦~~记录下今天弄的一个小功能. 先上图: 需求很简单: 第1列改变的时候,第2列也随着改变,并且比第1列大1k. 这里用到了微信的picker 组件,对于不太熟练这个组件的小伙伴可以 ...
- LeetCode 919. Complete Binary Tree Inserter
原题链接在这里:https://leetcode.com/problems/complete-binary-tree-inserter/ 题目: A complete binary tree is a ...
- php Web 项目的文件/文件夹上传下载
PHP用超级全局变量数组$_FILES来记录文件上传相关信息的. 1.file_uploads=on/off 是否允许通过http方式上传文件 2.max_execution_time=30 允许脚本 ...
- WinDbg 图形界面功能(三)
1.4.调试菜单 调试相关操作的功能菜单在这个下面,比如单步执行等. Go 单击Go调试菜单恢复 (或开始) 在目标上的执行. 此执行将继续,直到抵达某个断点. 异常或事件发生时,该过程结束或调试器将 ...
- TimescaleDB1.3 的新特性——Continuous aggregates: faster queries with automatically maintained materialized views
One characteristic of time-series data workloads is that the dataset will grow very quickly. Without ...
- 洛谷 题解 P2731 【骑马修栅栏 Riding the Fences】
简单的开始 完美の开始 这里数组什么的用来干什么后面标注的清楚了 #include<iostream> #include<cstdio> #include<cmath&g ...
- 2016级android在线测试15-图像 camera2
有趣有内涵的文章第一时间送达! 喝酒I创作I分享 生活中总有些东西值得分享 @醉翁猫咪 1. ImageView类用于显示各种图像,例如:图标.图片,下面对于ImageView类加载图片方法的描述错误 ...