Write a program to find the nth super ugly number.

Super ugly numbers are positive numbers whose all prime factors are in the given prime list primes of size k.

Example:

Input: n = 12, primes = [2,7,13,19]
Output: 32
Explanation: [1,2,4,7,8,13,14,16,19,26,28,32] is the sequence of the first 12
super ugly numbers given primes = [2,7,13,19] of size 4.

Note:

  • 1 is a super ugly number for any given primes.
  • The given numbers in primes are in ascending order.
  • 0 < k ≤ 100, 0 < n ≤ 106, 0 < primes[i] < 1000.
  • The nth super ugly number is guaranteed to fit in a 32-bit signed integer.

264. Ugly Number II 的拓展,还是找出第n个丑陋数,但质数集合不在只是2,3,5,而是可以任意给定。难度增加了,但本质上和Ugly Number II 没有什么区别,由于不知道质数的个数,可以用一个idx数组来保存当前的位置,然后从每个子链中取出一个数,找出其中最小值,然后更新idx数组对应位置,注意有可能最小值不止一个,要更新所有最小值的位置。

解题思路:
要使得super ugly number不漏掉,那么需要使用每个因子去乘以其对应的“第一个”丑数。那么何为对应的“第一个”丑数?

首先,利用ugly[]数组来保存所有的超级丑数,ugly[i]表示第i+1个超级丑数;

接着利用pointer[]数组来表示每个因子对应的“第一个”丑数的下标。pointer数组长度当然需要和primes长度一致,且初始化为0,代表着每个因子对应的“第一个”丑数都是ugly[0];

接下来我们以primes[2,7,13,19],pointer[0,0,0,0],ugly[0]=1作为初始条件往下看:

遍历primes数组,用每个因子都乘以其对应的第一个丑数,即ugly[0]=1,可以发现1x2=2是最小值,故ugly[1]=2;但要注意,此时的pointer数组发生了变化:

由于当前产生的丑数2是由2这个因子乘以它的对应“第一个”丑数得到的,因此需要将pointer[0]加一。pointer[0]是2这个因子对应的“第一个”丑数的下标,因为当前已经使用了2x1,如果不更新,则下一轮还是会用2这个因子去乘以第一个丑数(ugly[0]).将其更新后,则意味着2这个因子对应的第一个丑数已经改变了,变成了ugly[1].而其他三个对应的“第一个”丑数还是ugly[0]。

我们接着看下一轮:2x2【即ugly[pointer[1]]x2】,1x7,1x13,1x19,发现还是2这个因子得到的数最小,故更新:ugly[2]=2x2=4,pointer[0]=2;

下一轮:4x2,1x7,1x13,1x19,可以发现当前这一轮最小值是7,且由因子7产生,故更新:ugly[3]=7,pointer[1]=1;

以此类推....
如果更新过程中,出现最小值不止一个的话,则其对应的pointer的值都需要增加1。

Java:

public int nthSuperUglyNumber(int n, int[] primes) {
int[] ugly = new int[n+1];
ugly[0]=1;
int[] pointer = new int[primes.length];
for(int i=1;i<n;i++) {
int min=Integer.MAX_VALUE;
int minIndex = 0;
for(int j=0;j<primes.length;j++) {
if(ugly[pointer[j]]*primes[j]<min) {
min=ugly[pointer[j]]*primes[j];
minIndex = j;
}else if(ugly[pointer[j]]*primes[j]==min) {
pointer[j]++;
}
}
ugly[i]=min;
pointer[minIndex]++;
}
return ugly[n-1];
}

Java:1

public int nthSuperUglyNumberI(int n, int[] primes) {
int[] ugly = new int[n];
int[] idx = new int[primes.length]; ugly[0] = 1;
for (int i = 1; i < n; i++) {
//find next
ugly[i] = Integer.MAX_VALUE;
for (int j = 0; j < primes.length; j++)
ugly[i] = Math.min(ugly[i], primes[j] * ugly[idx[j]]); //slip duplicate
for (int j = 0; j < primes.length; j++) {
while (primes[j] * ugly[idx[j]] <= ugly[i]) idx[j]++;
}
} return ugly[n - 1];
}

Java:2

public int nthSuperUglyNumber(int n, int[] primes) {
int[] ugly = new int[n];
int[] idx = new int[primes.length];
int[] val = new int[primes.length];
Arrays.fill(val, 1); int next = 1;
for (int i = 0; i < n; i++) {
ugly[i] = next; next = Integer.MAX_VALUE;
for (int j = 0; j < primes.length; j++) {
//skip duplicate and avoid extra multiplication
if (val[j] == ugly[i]) val[j] = ugly[idx[j]++] * primes[j];
//find next ugly number
next = Math.min(next, val[j]);
}
} return ugly[n - 1];
}

Java: 3 index heap 

public int nthSuperUglyNumberHeap(int n, int[] primes) {
int[] ugly = new int[n]; PriorityQueue<Num> pq = new PriorityQueue<>();
for (int i = 0; i < primes.length; i++) pq.add(new Num(primes[i], 1, primes[i]));
ugly[0] = 1; for (int i = 1; i < n; i++) {
ugly[i] = pq.peek().val;
while (pq.peek().val == ugly[i]) {
Num nxt = pq.poll();
pq.add(new Num(nxt.p * ugly[nxt.idx], nxt.idx + 1, nxt.p));
}
} return ugly[n - 1];
} private class Num implements Comparable<Num> {
int val;
int idx;
int p; public Num(int val, int idx, int p) {
this.val = val;
this.idx = idx;
this.p = p;
} @Override
public int compareTo(Num that) {
return this.val - that.val;
}
} 

Python:

def nthSuperUglyNumber(self, n, primes):
ugly = [1]
pointers = [0]*len(primes) for i in range(1,n):
minu = float("inf")
minIndex = 0
for j in range(len(primes)):
if primes[j] * ugly[pointers[j]] < minu:
minu = primes[j] * ugly[pointers[j]]
minIndex = j
elif primes[j] * ugly[pointers[j]] == minu:
pointers[j] += 1
ugly.append(minu)
pointers[minIndex] += 1
return ugly[-1]  

Python:

# Heap solution. (620ms)
class Solution(object):
def nthSuperUglyNumber(self, n, primes):
"""
:type n: int
:type primes: List[int]
:rtype: int
"""
heap, uglies, idx, ugly_by_last_prime = [], [0] * n, [0] * len(primes), [0] * n
uglies[0] = 1 for k, p in enumerate(primes):
heapq.heappush(heap, (p, k)) for i in xrange(1, n):
uglies[i], k = heapq.heappop(heap)
ugly_by_last_prime[i] = k
idx[k] += 1
while ugly_by_last_prime[idx[k]] > k:
idx[k] += 1
heapq.heappush(heap, (primes[k] * uglies[idx[k]], k)) return uglies[-1]

Python:

# Time:  O(n * k)
# Space: O(n + k)
# Hash solution. (932ms)
class Solution2(object):
def nthSuperUglyNumber(self, n, primes):
"""
:type n: int
:type primes: List[int]
:rtype: int
"""
uglies, idx, heap, ugly_set = [0] * n, [0] * len(primes), [], set([1])
uglies[0] = 1 for k, p in enumerate(primes):
heapq.heappush(heap, (p, k))
ugly_set.add(p) for i in xrange(1, n):
uglies[i], k = heapq.heappop(heap)
while (primes[k] * uglies[idx[k]]) in ugly_set:
idx[k] += 1
heapq.heappush(heap, (primes[k] * uglies[idx[k]], k))
ugly_set.add(primes[k] * uglies[idx[k]]) return uglies[-1]

Python:  

# Time:  O(n * logk) ~ O(n * klogk)
# Space: O(n + k)
class Solution3(object):
def nthSuperUglyNumber(self, n, primes):
"""
:type n: int
:type primes: List[int]
:rtype: int
"""
uglies, idx, heap = [1], [0] * len(primes), []
for k, p in enumerate(primes):
heapq.heappush(heap, (p, k)) for i in xrange(1, n):
min_val, k = heap[0]
uglies += [min_val] while heap[0][0] == min_val: # worst time: O(klogk)
min_val, k = heapq.heappop(heap)
idx[k] += 1
heapq.heappush(heap, (primes[k] * uglies[idx[k]], k)) return uglies[-1]    

C++:

class Solution {
public:
int nthSuperUglyNumber(int n, vector<int>& primes) {
vector<int> res(1, 1), idx(primes.size(), 0);
while (res.size() < n) {
vector<int> tmp;
int mn = INT_MAX;
for (int i = 0; i < primes.size(); ++i) {
tmp.push_back(res[idx[i]] * primes[i]);
}
for (int i = 0; i < primes.size(); ++i) {
mn = min(mn, tmp[i]);
}
for (int i = 0; i < primes.size(); ++i) {
if (mn == tmp[i]) ++idx[i];
}
res.push_back(mn);
}
return res.back();
}
};

C++:  

class Solution {
public:
int nthSuperUglyNumber(int n, vector<int>& primes) {
vector<int> dp(n, 1), idx(primes.size(), 0);
for (int i = 1; i < n; ++i) {
dp[i] = INT_MAX;
for (int j = 0; j < primes.size(); ++j) {
dp[i] = min(dp[i], dp[idx[j]] * primes[j]);
}
for (int j = 0; j < primes.size(); ++j) {
if (dp[i] == dp[idx[j]] * primes[j]) {
++idx[j];
}
}
}
return dp.back();
}
};

  

类似题目:

[LeetCode] 263. Ugly Number 丑陋数

[LeetCode] 264. Ugly Number II 丑陋数 II

All LeetCode Questions List 题目汇总

[LeetCode] 313. Super Ugly Number 超级丑陋数的更多相关文章

  1. [LeetCode]313. Super Ugly Number超级丑数,丑数系列看这一道就行了

    丑数系列的题看这一道就可以了 /* 和ugly number2差不多,不过这次的质因子多了,所以用数组来表示质因子的target坐标 target坐标指的是这个质因子此次要乘的前任丑数是谁 */ pu ...

  2. [LeetCode] Super Ugly Number 超级丑陋数

    Write a program to find the nth super ugly number. Super ugly numbers are positive numbers whose all ...

  3. [LintCode] Super Ugly Number 超级丑陋数

    Write a program to find the nth super ugly number. Super ugly numbers are positive numbers whose all ...

  4. 313 Super Ugly Number 超级丑数

    编写一段程序来寻找第 n 个超级丑数.超级丑数是指其所有质因数都在长度为k的质数列表primes中的正整数.例如,[1, 2, 4, 7, 8, 13, 14, 16, 19, 26, 28, 32] ...

  5. Leetcode 313. super ugly number

    Write a program to find the nth super ugly number. Super ugly numbers are positive numbers whose all ...

  6. [LeetCode] 264. Ugly Number II 丑陋数 II

    Write a program to find the n-th ugly number. Ugly numbers are positive numbers whose prime factors ...

  7. leetcode 263. Ugly Number 、264. Ugly Number II 、313. Super Ugly Number 、204. Count Primes

    263. Ugly Number 注意:1.小于等于0都不属于丑数 2.while循环的判断不是num >= 0, 而是能被2 .3.5整除,即能被整除才去除这些数 class Solution ...

  8. [LeetCode] Ugly Number II 丑陋数之二

    Write a program to find the n-th ugly number. Ugly numbers are positive numbers whose prime factors ...

  9. [LeetCode] 264. Ugly Number II 丑陋数之二

    Write a program to find the n-th ugly number. Ugly numbers are positive numbers whose prime factors ...

随机推荐

  1. poj3522Slim Span(暴力+Kruskal)

    思路: 最小生成树是瓶颈生成树,瓶颈生成树满足最大边最小. 数据量较小,所以只需要通过Kruskal,将边按权值从小到大排序,枚举最小边求最小生成树,时间复杂度为O( nm(logm) ) #incl ...

  2. .NET 使用 VLC 播放视频

    使用 VLC 播放监控有几个月了,现在是多个项目中都有用到.在使用的过程中也有一些细节供大家参考. 一.对 VLC 的了解 VLC 是一个开源的跨平台多媒体播放器及框架. VLC 官方出的有播放器.编 ...

  3. sqoop从oracle数据库抽取数据,导入到hive

    环境: hadoop-2.7.5 sqoop-1.4.7 zookeeper-3.4.10 hive-2.3.3 (使用mysql配置元数据库) jdk1.8.0_151 oracle 11.2.0. ...

  4. windows 10 下使用Navicat for oracle 数据库还原

    一.前期准备 1.安装windows 10系统 2.安装oracle 11g 数据库 3.安装PLsql(也不需要) 4.安装sqlplus(这个必须有) 5.使用下面这个东西新建数据库(不懂创建的话 ...

  5. nginx的alias与root的区别

    root的写法: location /request_path/image/ { root /local_path/image/; } 这样配置的结果就是当客户端请求 /request_path/im ...

  6. 8-html表格

    <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <meta http ...

  7. Linux端口转发工具rinetd

    介绍:Rinetd是为在一个Unix和Linux操作系统中为重定向传输控制协议(TCP)连接的一个工具.Rinetd是单一过程的服务器,它处理任何数量的连接到在配置文件etc/rinetd中指定的地址 ...

  8. 学习Spring-Data-Jpa(十)---注解式方法查询之@Query、@Modifying与派生delete

    1.@Query 对于少量的查询,使用@NamedQuery在实体上声明查询是一种有效的办法,并且可以很好的工作.由于查询本身绑定到执行它们的java方法,实际上可以通过Spring-Data-Jpa ...

  9. java大附件上传,支持断点续传

    一. 功能性需求与非功能性需求 要求操作便利,一次选择多个文件和文件夹进行上传:支持PC端全平台操作系统,Windows,Linux,Mac 支持文件和文件夹的批量下载,断点续传.刷新页面后继续传输. ...

  10. 2019.12.11 java程序中几种常见的异常以及出现此异常的原因

    1.java.lang.NullpointerException(空指针异常) 原因:这个异常经常遇到,异常的原因是程序中有空指针,即程序中调用了未经初始化的对象或者是不存在的对象. 经常出现在创建对 ...