通过直方图进行PCA准备
import graphviz
import mglearn
from mpl_toolkits.mplot3d import Axes3D
from sklearn.datasets import load_breast_cancer, make_blobs
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
from sklearn.svm import SVC
from sklearn.tree import DecisionTreeClassifier, export_graphviz
from IPython.display import display
import matplotlib.pyplot as plt
import numpy as np
import matplotlib as mt
import pandas as pd
from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split
cancer = load_breast_cancer() # X_train, X_test, y_train, y_test = train_test_split(cancer.data, cancer.target,
# random_state=1)
fig, axes = plt.subplots(15, 2, figsize=(10, 20))
malignant = cancer.data[cancer.target == 0]
benign = cancer.data[cancer.target == 1]
ax = axes.ravel()
# 直方图显示了数据值的分布情况
for i in range(30):
_, bins = np.histogram(cancer.data[:, i], bins=50)
# 逐列取数
ax[i].hist(malignant[:, i], bins=bins, color=mglearn.cm3(0), alpha=.5)
ax[i].hist(benign[:, i], bins=bins, color=mglearn.cm3(2), alpha=.5)
ax[i].set_title(cancer.feature_names[i])
ax[i].set_yticks(())
ax[0].set_xlabel("Feature magnitude")
ax[0].set_ylabel("Frequency")
ax[0].legend(["malignant", "benign"], loc="best")
fig.tight_layout()
plt.show()

通过直方图进行PCA准备的更多相关文章
- 论文阅读:Face Recognition: From Traditional to Deep Learning Methods 《人脸识别综述:从传统方法到深度学习》
论文阅读:Face Recognition: From Traditional to Deep Learning Methods <人脸识别综述:从传统方法到深度学习> 一.引 ...
- R & ggplot2 & Excel绘图(直方图/经验分布图/QQ图/茎叶图/箱线图)实例
持续更新~ 散点图 条形图 文氏图 饼图 盒型图 频率直方图 热图 PCA图 3D图 火山图 分面图 分面制作小多组图 地图 练习数据: year count china Ame jap '12 2. ...
- 漫谈Deep PCA与PCANet
又到了无聊的写博客的时间了,因为电脑在跑程序.眼下无事可做.我认为把昨天我看的一些论文方面的知识拿出来和大家分享一下. 美其名曰我是在研究"深度学习".只是因为本人是穷屌丝一个,买 ...
- python异常值(outlier)检测实战:KMeans + PCA + IsolationForest + SVM + EllipticEnvelope
机器学习_深度学习_入门经典(博主永久免费教学视频系列) https://study.163.com/course/courseMain.htm?courseId=1006390023&sha ...
- PCA的原理简述
PCA的实质就是要根据样本向量之间的相关性排序,去掉相关性低的信息,也就是冗余的特征信息. 我们都知道噪声信号与待测量的信号之间实际上是没有相关性的,所以我我们利用这个原理就可以将与待测量无关的噪声信 ...
- 【Gabor】基于多尺度多方向Gabor融合+分块直方图的表情识别
Topic:表情识别Env: win10 + Pycharm2018 + Python3.6.8Date: 2019/6/23~25 by hw_Chen2018 ...
- 用scikit-learn学习主成分分析(PCA)
在主成分分析(PCA)原理总结中,我们对主成分分析(以下简称PCA)的原理做了总结,下面我们就总结下如何使用scikit-learn工具来进行PCA降维. 1. scikit-learn PCA类介绍 ...
- 主成分分析(PCA)原理总结
主成分分析(Principal components analysis,以下简称PCA)是最重要的降维方法之一.在数据压缩消除冗余和数据噪音消除等领域都有广泛的应用.一般我们提到降维最容易想到的算法就 ...
- Oracle索引梳理系列(十)- 直方图使用技巧及analyze table操作对直方图统计的影响(谨慎使用)
版权声明:本文发布于http://www.cnblogs.com/yumiko/,版权由Yumiko_sunny所有,欢迎转载.转载时,请在文章明显位置注明原文链接.若在未经作者同意的情况下,将本文内 ...
随机推荐
- postgresql —— 数组类型
创建数组 CREATE TABLE sal_emp ( name text, pay_by_quarter integer[] --还可以定义为integer[4]或integer ARRAY[4] ...
- [CodeForces - 906D] Power Tower——扩展欧拉定理
题意 给你 $n$ 个 $w_i$ 和一个数 $p$,$q$个询问,每次询问一个区间 $[l,r] $,求 $w_l ^{w_{l+1}^{{\vdots}^{w_r}}} \ \% p$ 分析 由扩 ...
- NOI.ac模拟赛20181021 ball sequence color
T1 ball 可以发现每次推动球时,是将每个球的位置 −1-1−1 ,然后把最左边的球放到 P−1P-1P−1 处. 记个 −1-1−1 次数,再用set维护就好了. #include <bi ...
- [React] Create an Animate Content Placeholder for Loading State in React
We will create animated Content Placeholder as React component just like Facebook has when you load ...
- 洛谷 P1439 【模板】最长公共子序列 题解
每日一题 day40 打卡 Analysis 因为两个序列都是1~n 的全排列,那么两个序列元素互异且相同,也就是说只是位置不同罢了,那么我们通过一个book数组将A序列的数字在B序列中的位置表示出来 ...
- 洛谷 P3375 【模板】KMP字符串匹配 题解
KMP模板,就不解释了 #include<iostream> #include<cstdio> #include<cstring> #include<algo ...
- Oracle ACS 绑定变量窥视 条件
1. ACS简介 Oracle Database 11g提供了Adaptive Cursor Sharing (ACS)功能,以克服以往不该共享的游标被共享的可能性.ACS使用两个新指标:sensit ...
- Kubernetes 学习26 基于kubernetes的Paas概述
一.概述 1.通过以往的学习应该可以了解到k8s 和以往提到的devops概念更容易落地了.比如我们说的CI,CD,CD a.CI(Continuous Integration):持续集成 b.CD( ...
- ipkg-nas
http://pkg.entware.net/binaries/x86-64/ https://forum.synology.com/enu/viewtopic.php?t=95346 http:// ...
- Jenkins - Update information obtained: 不可用 ago;
Jenkins 添加插件 jenkins plugin提示: Update information obtained: 不可用 ago: 编辑 hudson.model.UpdateCenter.xm ...