【432】COMP9024,Exercise9
eulerianCycle.c
- What determines whether a graph is Eulerian or not?
- Write a C program that reads a graph, prints the graph, and determines whether an input graph is Eulerian or not.
- if the graph is Eulerian, the program prints an Eulerian path
- you should start with vertex 0
note that you may use the function findEulerianCycle() from the lecture on Graph Search Applications
if it is not Eulerian, the program prints the message Not Eulerian
- if the graph is Eulerian, the program prints an Eulerian path
For example,
- The graph:
#4
0 1 0 2 0 3 1 2 2 3is not Eulerian (can you see why?). Using this as input, your program should output:
V=4, E=5
<0 1> <0 2> <0 3>
<1 0> <1 2>
<2 0> <2 1> <2 3>
<3 0> <3 2>
Not Eulerian In the above-named lecture I showed a 'concentric squares' graph (called concsquares):
#8
0 7 7 5 5 1 1 0
6 0 6 7
2 5 2 7
4 1 4 5
3 0 3 1which is Eulerian, although I've labelled the vertices differently here. For this input your program should produce the output:
V=8, E=12
<0 1> <0 3> <0 6> <0 7>
<1 0> <1 3> <1 4> <1 5>
<2 5> <2 7>
<3 0> <3 1>
<4 1> <4 5>
<5 1> <5 2> <5 4> <5 7>
<6 0> <6 7>
<7 0> <7 2> <7 5> <7 6>
Eulerian cycle: 0 1 4 5 2 7 5 1 3 0 6 7 0Draw concsquares, label it as given in the input file above, and check the cycle is indeed Eulerian.
The function findEulerCycle() in the lecture notes does not handle disconnected graphs. In a disconnected Eulerian graph, each subgraph has an Eulerian cycle.
- Modify this function to handle disconnected graphs.
- With this change, your program should now work for the graph consisting of 2 disconnected triangles:
#6
0 1 0 2 1 2 3 4 3 5 4 5It should now find 2 Eulerian paths:
V=6, E=6
<0 1> <0 2>
<1 0> <1 2>
<2 0> <2 1>
<3 4> <3 5>
<4 3> <4 5>
<5 3> <5 4>
Eulerian cycle: 0 1 2 0
Eulerian cycle: 3 4 5 3
思路:经过一条边就删掉一个,通过遍历查找是否遍历完(针对不连通的graph)
#include <stdio.h>
#include <stdlib.h>
#include <stdbool.h>
#include "Graph.h"
#include "Quack.h" #define UNVISITED -1
#define WHITESPACE 100 void dfsR(Graph g, Vertex v, int numV, int *order, int *visited);
Vertex getAdjacent(Graph g, int numV, Vertex v); int readNumV(void) { // returns the number of vertices numV or -1
int numV;
char w[WHITESPACE];
scanf("%[ \t\n]s", w); // skip leading whitespace
if ((getchar() != '#') ||
(scanf("%d", &numV) != 1)) {
fprintf(stderr, "missing number (of vertices)\n");
return -1;
}
return numV;
} int readGraph(int numV, Graph g) { // reads number-number pairs until EOF
int success = true; // returns true if no error
int v1, v2;
while (scanf("%d %d", &v1, &v2) != EOF && success) {
if (v1 < 0 || v1 >= numV || v2 < 0 || v2 >= numV) {
fprintf(stderr, "unable to read edge\n");
success = false;
}
else {
insertE(g, newE(v1, v2));
}
}
return success;
} void findEulerCycle(Graph g, int numV, Vertex startv) {
Quack s = createQuack();
push(startv, s); int allVis = 0;
while (!allVis) {
printf("Eulerian cycle: ");
while (!isEmptyQuack(s)) {
Vertex v = pop(s); // v is the top of stack vertex and ...
push(v, s); // ... the stack has not changed
Vertex w;
if ((w = getAdjacent(g, numV, v)) >= 0) {
push(w, s); // push a neighbour of v onto stack
removeE(g, newE(v, w)); // remove edge to neighbour
}
else {
w = pop(s);
printf("%d ", w);
}
}
printf("\n");
allVis = 1; for (Vertex v = 0; v < numV && allVis; v++) {
for (Vertex w = 0; w < numV && allVis; w++) {
if (isEdge(g, newE(v, w))) {
allVis = 0;
push(v, s);
}
}
}
}
} Vertex getAdjacent(Graph g, int numV, Vertex v) {
// returns the Largest Adjacent Vertex if it exists, else -1
Vertex w;
Vertex lav = -1; // the adjacent vertex
for (w=numV-1; w>=0 && lav==-1; w--) {
Edge e = newE(v, w);
if (isEdge(g, e)) {
lav = w;
}
}
return lav;
} int isEulerian(Graph g, int numV) {
int count = 0;
for (Vertex w = 0; w < numV; w++) {
count = 0;
for (Vertex v = 0; v < numV; v++) {
if (isEdge(g, newE(w, v))) {
count++;
}
}
if (count % 2 != 0) {
return 0;
}
}
return 1;
} int main (void) {
int numV;
if ((numV = readNumV()) >= 0) {
Graph g = newGraph(numV);
if (readGraph(numV, g)) {
showGraph(g); if(isEulerian(g, numV)) {
findEulerCycle(g, numV, 0);
}
else {
printf("Not Eulerian\n");
}
}
}
else {
return EXIT_FAILURE;
}
return EXIT_SUCCESS;
} // clear && gcc dfs_EulerCycle.c GraphAM.c Quack.c && ./a.out < input_1.txt // clear && gcc dfs_EulerCycle.c GraphAM.c Quack.c && ./a.out < input_2.txt // clear && gcc dfs_EulerCycle.c GraphAM.c Quack.c && ./a.out < input_3.txt
unreachable.c
Write a program that uses a fixed-point computation to find all the vertices in a graph that are unreachable from the start vertex (assume it to be 0). Note the following:
- the fixed-point computation should be iterative
you should not use recursion, or stacks or queues
If a graph is disconnected:
- then those vertices not reachable (say vertices 8 and 9) should be output as follows:
Unreachable vertices = 8 9
If a graph is connected then all vertices are reachable and the output is :
Unreachable vertices = none
For example:
- Here is a graph that consists of 2 disconnected triangles:
#6
0 1 0 2 1 2 3 4 3 5 4 5If the start vertex is 0, then the output should be:
V=6, E=6
<0 1> <0 2>
<1 0> <1 2>
<2 0> <2 1>
<3 4> <3 5>
<4 3> <4 5>
<5 3> <5 4>
Unreachable vertices = 3 4 5because obviously the vertices in the second triangle are not reachable from the first.
- here is a connected graph:
#5
0 1 1 2 2 3 3 4 4 0
1 3 1 4
2 4Starting at any vertex, the result should be:
V=5, E=8
<0 1> <0 4>
<1 0> <1 2> <1 3> <1 4>
<2 1> <2 3> <2 4>
<3 1> <3 2> <3 4>
<4 0> <4 1> <4 2> <4 3>
Unreachable vertices = none
思路:
- 首先就是设置 outside数组,默认是都为 -1,一旦被访问了就赋值为 0,变为 inside
- 设置一个 changing 字符串,用来监测 outside 数组是否有变化
- 如果变化的话,就遍历所有inside的点的相连接的点,如果发现 outside,则将此点赋值为 inside,changing 赋值为1
- while 循环,继续遍历,知道所有 inside 点的邻接点都是 inside,遍历结束
- 因此会将所有一个连通图中的点放入在 inside 内部
#include <stdio.h>
#include <stdlib.h>
#include <stdbool.h>
#include "Graph.h" #define UNVISITED -1
#define WHITESPACE 100 int readNumV(void) { // returns the number of vertices numV or -1
int numV;
char w[WHITESPACE];
scanf("%[ \t\n]s", w); // skip leading whitespace
if ((getchar() != '#') ||
(scanf("%d", &numV) != 1)) {
fprintf(stderr, "missing number (of vertices)\n");
return -1;
}
return numV;
} int readGraph(int numV, Graph g) { // reads number-number pairs until EOF
int success = true; // returns true if no error
int v1, v2;
while (scanf("%d %d", &v1, &v2) != EOF && success) {
if (v1 < 0 || v1 >= numV || v2 < 0 || v2 >= numV) {
fprintf(stderr, "unable to read edge\n");
success = false;
}
else {
insertE(g, newE(v1, v2));
}
}
return success;
} int *mallocArray(int numV) {
int *array = malloc(numV * sizeof(int));// l
if (array == NULL) { // o
fprintf(stderr, "Out of memory\n"); // c
exit(1); // a
} // l
int i; // f
for (i=0; i<numV; i++) { // u
array[i] = UNVISITED; // n
} // c
return array; // t
} void showUnreach(Graph g, int numV, Vertex startv) {
int *outside = mallocArray(numV);
outside[startv] = 0;
int changing = 1;
while (changing) {
changing = 0;
for (Vertex v = 0; v < numV; v++) {
if (!outside[v]) {
for (Vertex w = 0; w < numV; w++) {
if (isEdge(g, newE(v, w)) && outside[w] == UNVISITED) {
outside[w] = 0;
changing = 1;
}
}
}
}
}
printf("Unreachable vertices = ");
int any = 0;
for (Vertex v = 0; v < numV; v++) {
if (outside[v] == UNVISITED) {
printf("%d ", v);
any = 1;
}
}
if (!any) {
printf("none");
}
putchar('\n');
return;
} int main (void) {
int numV;
if ((numV = readNumV()) >= 0) {
Graph g = newGraph(numV);
if (readGraph(numV, g)) {
showGraph(g);
showUnreach(g, numV, 0);
}
}
else {
return EXIT_FAILURE;
}
return EXIT_SUCCESS;
} // clear && gcc unreachable.c GraphAM.c && ./a.out < input_1.txt // clear && gcc unreachable.c GraphAM.c && ./a.out < input_2.txt // clear && gcc unreachable.c GraphAM.c && ./a.out < input_3.txt
【432】COMP9024,Exercise9的更多相关文章
- 【Demo】QQ,github,微博第三方社交登录
本文主要讲解 集成 第三方社交账号登录 为什么会有这个需求? 主要是因为目前互联网的网站数量太多,如果在各个站点都注册一个账号 用户非常不容易记住每个账号的用户名和密码,并且非常难保证每个账号的密码足 ...
- 【MVC】 js,css 压缩
[MVC] js,css 压缩 一. 引用 System.Web.Optimization.dll : 使用 Nuget ,在控制台输入 Install-Package Microsoft.AspNe ...
- 关于【bootstrap】中,【tooltip】的不算bug的bug的个人看法
先说下遇到这个问题的背景吧. 就是在页面中有个div,这个div右上角(或者其他位置)有个 × 的图标(这个图标添加tooltip工具提示),光标移到这个图标时,触发tooltip,提示“点击移除”这 ...
- Switch选择语句能否作用在String【字符串】上,也就是能否这么写:Switch(一个字符串变量)?
Switch选择语句能否作用在String[字符串]上,也就是能否这么写:Switch(一个字符串变量)? 解答:不可以,只能处理int,byte,short,char,(其实是只能处理int,其它三 ...
- 【多线程】 Task ,async ,await
[多线程]Task ,async ,await 一. WinForm 里经常会用到多线程, 多线程的好出就不多说了,来说说多线程比较麻烦的地方 1. UI 线程与其他线程的同步,主要是 Form 和 ...
- 【题解】Leyni,罗莉和队列(树状数组)
[题解]Leyni,罗莉和队列(树状数组) HRBUST - 1356 将整个序列reverse一下,现在就变成了从高到低的排队.题目就变成了,定位一个妹子,问这个妹子前面的比这个妹子小的妹子中,下标 ...
- 【javascript】您好, 您要的ECMAScript6速记套餐到了
[前言]本文“严重参考” 自阮一峰老师写的文档,在此我郑重感谢他沉默无声的帮助 总结一下ES6为 javascript中的 对象/数组/函数 这JS三巨头所提供的更简洁优雅的书写方式,以及扩展的API ...
- 【转载】通俗易懂,什么是.NET?什么是.NET Framework?什么是.NET Core?
本文转载自:http://www.cnblogs.com/1996V/p/9037603.html [尊重作者原创,转载说明出处!感谢作者“小曾看世界”分享! ] 什么是.NET?什么是.NET Fr ...
- 【npm】伙计,给我来一杯package.json!不加糖
前言:夜深了,我熬了一锅热气腾腾的package.json,给大家端上来,希望大家喜欢 json和JS对象的区别 package.json,顾名思义,它是一个json文件,而不能写入JS对象. 所以我 ...
随机推荐
- 神经网络(9)--如何求参数: backpropagation algorithm(反向传播算法)
Backpropagation algorithm(反向传播算法) Θij(l) is a real number. Forward propagation 上图是给出一个training examp ...
- windows部署tomcat
一.下载相应的JDK以及tomcat的版本 JDK:jdk-8u131-windows-x64 tomcat:apache-tomcat-8.5.23-windows-x64.zip 二.JDK的安装 ...
- dosbox+masm5.0编译汇编文件
在去年写过如何bc3.1编译ucos,不过现在很少去用到,但是那是用dosbox也是懵懵懂懂的,参见https://blog.csdn.net/liming0931/article/details/8 ...
- thrift 安装
1.下载 去官网 https://thrift.apache.org/download 下载两个文件,下载地址 http://archive.apache.org/dist/thrift/0.9.3/ ...
- Tensorflow细节-P160-迁移学习
这是一个完整的程序,值得保存 1.对图片进行预处理并保存 import glob import os.path import numpy as np import tensorflow as tf f ...
- Bootstrap是什么意思?
Bootstrap是一组用于网站和网络应用程序开发的开源前端(所谓“前端”,指的是展现给最终用户的界面.与之对应的“后端”是在服务器上面运行的代码)框架,包括HTML.CSS及JavaScript的框 ...
- CF316G3 Good Substrings 广义后缀自动机
太累了,刷刷水~ code: #include <bits/stdc++.h> #define N 500005 #define LL long long #define setIO(s) ...
- 配置django的环境实现外部脚本调用django中的模型类
通过导入os模块,os设置django的settings文件,配置好django项目的环境,然后执行django.set_up()使环境生效,然后就可以导入模型类,使用增删改查
- GSS1 A - Can you answer these queries I
//题意:询问一段区间的最大子序列的值. //做法:维护四个值:包含当前区间左端点的最大子区间LM,包含当前区间右端点的最大子区间RM.当前区间的最大子区间M, 当前区间的区间和S //tree[ro ...
- 洛谷P5017摆渡车
题目 一道做法多种多样的题,DP做法的状态也很多. 我用\(dp[i]\)表示在第i秒发车的时间和,然后dp方程就很好写了 \(dp[i] = dp[j] + i车的等待时间\)j属于i-2m ~ i ...