背景:跟上一讲一样,识别手写数字,给一组数据集ex4data1.mat,,每个样例都为灰度化为20*20像素,也就是每个样例的维度为400,加载这组数据后,我们会有5000*400的矩阵X(5000个样例),5000*1的矩阵y(表示每个样例所代表的数据)。现在让你拟合出一个模型,使得这个模型能很好的预测其它手写的数字。

(注意:我们用10代表0(矩阵y也是这样),因为Octave的矩阵没有0行)

一:神经网络( Neural Networks)

  神经网络脚本ex4.m:

%% Machine Learning Online Class - Exercise  Neural Network Learning

%  Instructions
% ------------
%
% This file contains code that helps you get started on the
% linear exercise. You will need to complete the following functions
% in this exericse:
%
% sigmoidGradient.m
% randInitializeWeights.m
% nnCostFunction.m
%
% For this exercise, you will not need to change any code in this file,
% or any other files other than those mentioned above.
% %% Initialization
clear ; close all; clc %% Setup the parameters you will use for this exercise
input_layer_size = ; % 20x20 Input Images of Digits
hidden_layer_size = ; % hidden units
num_labels = ; % labels, from to
% (note that we have mapped "" to label ) %% =========== Part : Loading and Visualizing Data =============
% We start the exercise by first loading and visualizing the dataset.
% You will be working with a dataset that contains handwritten digits.
% % Load Training Data
fprintf('Loading and Visualizing Data ...\n') load('ex4data1.mat');
m = size(X, ); % Randomly select data points to display
sel = randperm(size(X, ));
sel = sel(:); displayData(X(sel, :)); fprintf('Program paused. Press enter to continue.\n');
pause; %% ================ Part : Loading Parameters ================
% In this part of the exercise, we load some pre-initialized
% neural network parameters. fprintf('\nLoading Saved Neural Network Parameters ...\n') % Load the weights into variables Theta1(25x401) and Theta2(10x26)
load('ex4weights.mat'); % Unroll parameters
nn_params = [Theta1(:) ; Theta2(:)]; %% ================ Part : Compute Cost (Feedforward) ================
% To the neural network, you should first start by implementing the
% feedforward part of the neural network that returns the cost only. You
% should complete the code in nnCostFunction.m to return cost. After
% implementing the feedforward to compute the cost, you can verify that
% your implementation is correct by verifying that you get the same cost
% as us for the fixed debugging parameters.
%
% We suggest implementing the feedforward cost *without* regularization
% first so that it will be easier for you to debug. Later, in part , you
% will get to implement the regularized cost.
%
fprintf('\nFeedforward Using Neural Network ...\n') % Weight regularization parameter (we set this to here).
lambda = ; J = nnCostFunction(nn_params, input_layer_size, hidden_layer_size, ...
num_labels, X, y, lambda); fprintf(['Cost at parameters (loaded from ex4weights): %f '...
'\n(this value should be about 0.287629)\n'], J); fprintf('\nProgram paused. Press enter to continue.\n');
pause; %% =============== Part : Implement Regularization ===============
% Once your cost function implementation is correct, you should now
% continue to implement the regularization with the cost.
% fprintf('\nChecking Cost Function (w/ Regularization) ... \n') % Weight regularization parameter (we set this to here).
lambda = ; J = nnCostFunction(nn_params, input_layer_size, hidden_layer_size, ...
num_labels, X, y, lambda); fprintf(['Cost at parameters (loaded from ex4weights): %f '...
'\n(this value should be about 0.383770)\n'], J); fprintf('Program paused. Press enter to continue.\n');
pause; %% ================ Part : Sigmoid Gradient ================
% Before you start implementing the neural network, you will first
% implement the gradient for the sigmoid function. You should complete the
% code in the sigmoidGradient.m file.
% fprintf('\nEvaluating sigmoid gradient...\n') g = sigmoidGradient([- -0.5 0.5 ]);
fprintf('Sigmoid gradient evaluated at [-1 -0.5 0 0.5 1]:\n ');
fprintf('%f ', g);
fprintf('\n\n'); fprintf('Program paused. Press enter to continue.\n');
pause; %% ================ Part : Initializing Pameters ================
% In this part of the exercise, you will be starting to implment a two
% layer neural network that classifies digits. You will start by
% implementing a function to initialize the weights of the neural network
% (randInitializeWeights.m) fprintf('\nInitializing Neural Network Parameters ...\n') initial_Theta1 = randInitializeWeights(input_layer_size, hidden_layer_size);
initial_Theta2 = randInitializeWeights(hidden_layer_size, num_labels); % Unroll parameters
initial_nn_params = [initial_Theta1(:) ; initial_Theta2(:)]; %% =============== Part : Implement Backpropagation ===============
% Once your cost matches up with ours, you should proceed to implement the
% backpropagation algorithm for the neural network. You should add to the
% code you've written in nnCostFunction.m to return the partial
% derivatives of the parameters.
%
fprintf('\nChecking Backpropagation... \n'); % Check gradients by running checkNNGradients
checkNNGradients; fprintf('\nProgram paused. Press enter to continue.\n');
pause; %% =============== Part : Implement Regularization ===============
% Once your backpropagation implementation is correct, you should now
% continue to implement the regularization with the cost and gradient.
% fprintf('\nChecking Backpropagation (w/ Regularization) ... \n') % Check gradients by running checkNNGradients
lambda = ;
checkNNGradients(lambda); % Also output the costFunction debugging values
debug_J = nnCostFunction(nn_params, input_layer_size, ...
hidden_layer_size, num_labels, X, y, lambda); fprintf(['\n\nCost at (fixed) debugging parameters (w/ lambda = %f): %f ' ...
'\n(for lambda = 3, this value should be about 0.576051)\n\n'], lambda, debug_J); fprintf('Program paused. Press enter to continue.\n');
pause; %% =================== Part : Training NN ===================
% You have now implemented all the code necessary to train a neural
% network. To train your neural network, we will now use "fmincg", which
% is a function which works similarly to "fminunc". Recall that these
% advanced optimizers are able to train our cost functions efficiently as
% long as we provide them with the gradient computations.
%
fprintf('\nTraining Neural Network... \n') % After you have completed the assignment, change the MaxIter to a larger
% value to see how more training helps.
options = optimset('MaxIter', ); % You should also try different values of lambda
lambda = ; % Create "short hand" for the cost function to be minimized
costFunction = @(p) nnCostFunction(p, ...
input_layer_size, ...
hidden_layer_size, ...
num_labels, X, y, lambda); % Now, costFunction is a function that takes in only one argument (the
% neural network parameters)
[nn_params, cost] = fmincg(costFunction, initial_nn_params, options); % Obtain Theta1 and Theta2 back from nn_params
Theta1 = reshape(nn_params(:hidden_layer_size * (input_layer_size + )), ...
hidden_layer_size, (input_layer_size + )); Theta2 = reshape(nn_params(( + (hidden_layer_size * (input_layer_size + ))):end), ...
num_labels, (hidden_layer_size + )); fprintf('Program paused. Press enter to continue.\n');
pause; %% ================= Part : Visualize Weights =================
% You can now "visualize" what the neural network is learning by
% displaying the hidden units to see what features they are capturing in
% the data. fprintf('\nVisualizing Neural Network... \n') displayData(Theta1(:, :end)); fprintf('\nProgram paused. Press enter to continue.\n');
pause; %% ================= Part : Implement Predict =================
% After training the neural network, we would like to use it to predict
% the labels. You will now implement the "predict" function to use the
% neural network to predict the labels of the training set. This lets
% you compute the training set accuracy. pred = predict(Theta1, Theta2, X); fprintf('\nTraining Set Accuracy: %f\n', mean(double(pred == y)) * );

ex4.m

  1,通过可视化数据,可以看到如下图所示:

  2,前向传播代价函数(Feedforward and cost function)

  

$J(\Theta)=-\frac{1}{m}\sum_{i=1}^{m}\sum_{k=1}^{K}[y^{(i)}_k(log(h_\Theta(x^{(i)}))_k)+(1-y^{(i)}_k)log(1-(h_{\Theta}(x^{(i)}))_k)]$

$+\frac{\lambda }{2m}\sum_{l=1}^{L-1}\sum_{i=1}^{s_l}\sum_{j=1}^{s_l+1}(\Theta_{ji}^{l})^{2}$

注意:$(h_\Theta(x^{(i)}))_k=a^{(3)}_k$,第k个输出单元。

该代价函数正则化时忽略偏差项,最里层的循环$

Andrew Ng机器学习 四:Neural Networks Learning的更多相关文章

  1. (原创)Stanford Machine Learning (by Andrew NG) --- (week 5) Neural Networks Learning

    本栏目内容来自Andrew NG老师的公开课:https://class.coursera.org/ml/class/index 一般而言, 人工神经网络与经典计算方法相比并非优越, 只有当常规方法解 ...

  2. (原创)Stanford Machine Learning (by Andrew NG) --- (week 4) Neural Networks Representation

    Andrew NG的Machine learning课程地址为:https://www.coursera.org/course/ml 神经网络一直被认为是比较难懂的问题,NG将神经网络部分的课程分为了 ...

  3. [C4] Andrew Ng - Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization

    About this Course This course will teach you the "magic" of getting deep learning to work ...

  4. 斯坦福大学公开课机器学习: neural networks learning - autonomous driving example(通过神经网络实现自动驾驶实例)

    使用神经网络来实现自动驾驶,也就是说使汽车通过学习来自己驾驶. 下图是通过神经网络学习实现自动驾驶的图例讲解: 左下角是汽车所看到的前方的路况图像.左上图,可以看到一条水平的菜单栏(数字4所指示方向) ...

  5. 【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 9_Neural Networks learning

    神经网络的学习(Neural Networks: Learning) 9.1 代价函数 Cost Function 参考视频: 9 - 1 - Cost Function (7 min).mkv 假设 ...

  6. Andrew Ng机器学习课程笔记(四)之神经网络

    Andrew Ng机器学习课程笔记(四)之神经网络 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7365730.html 前言 ...

  7. Andrew Ng机器学习课程11之使用machine learning的建议

    Andrew Ng机器学习课程11之使用machine learning的建议 声明:引用请注明出处http://blog.csdn.net/lg1259156776/ 2015-9-28 艺少

  8. 【原】Coursera—Andrew Ng机器学习—编程作业 Programming Exercise 4—反向传播神经网络

    课程笔记 Coursera—Andrew Ng机器学习—课程笔记 Lecture 9_Neural Networks learning 作业说明 Exercise 4,Week 5,实现反向传播 ba ...

  9. Machine Learning - 第5周(Neural Networks: Learning)

    The Neural Network is one of the most powerful learning algorithms (when a linear classifier doesn't ...

随机推荐

  1. springboot入门简单,深入难

    18年1月份的时候在腾讯课堂学习springboot.springcloud搭建微服务,老师告诉我们,springboot入门容易,深入难. 因为你必须东西SpringMVC.Spring.Mybat ...

  2. [LeetCode] 260. Single Number III 单独数 III

    Given an array of numbers nums, in which exactly two elements appear only once and all the other ele ...

  3. 托马斯·贝叶斯 (Thomas Bayes)

    朴素贝叶斯   Day15,开始学习朴素贝叶斯,先了解一下贝爷,以示敬意. 托马斯·贝叶斯 (Thomas Bayes),英国神学家.数学家.数理统计学家和哲学家,1702年出生于英国伦敦,做过神甫: ...

  4. sorted内置函数

    对List.Dict进行排序,Python提供了两个方法 --------------------------------sorted--------------------------------- ...

  5. jquery向上滚动页面的写法

    jquery向上滚动页面的写法<pre> $('.arrow_top').on('click',function () { $body = (window.opera) ? (docume ...

  6. 1、快速搭建后台list

    @RestController @CrossOrigin public class UserController { @Resource private UserService userService ...

  7. 微前端框架 single-spa

    单体应用对比前端微服务化 普通的前端单体应用 微前端架构 1.基本概念 实现一套微前端架构,可以把其分成四部分(参考:https://alili.tech/archive/11052bf4/) 加载器 ...

  8. [转帖]华为一枝独秀!Q3国内智能手机出货量公布:Ov、小米、iPhone侧目

    华为一枝独秀!Q3国内智能手机出货量公布:Ov.小米.iPhone侧目 https://news.cnblogs.com/n/645880/ 华为真生猛.. 作者:花生酱 国内手机市场份额争夺激烈,你 ...

  9. Java开发笔记(一百二十七)Swing的标签

    提起AWT的标签控件Label,那个使用体验可真叫糟糕,不但不支持文字换行,而且对中文很不友好,既可能把中文显示为乱码,还不支持博大精深的各种中文字体.所幸Swing的升级版标签JLabel在各方面都 ...

  10. 3.01定义常量之define

    [注:本程序验证是使用vs2013版] #include <stdio.h> #include <stdlib.h> #include <string.h> #pr ...