一文弄懂Pytorch的DataLoader, DataSet, Sampler之间的关系
以下内容都是针对Pytorch 1.0-1.1介绍。
很多文章都是从Dataset等对象自下往上进行介绍,但是对于初学者而言,其实这并不好理解,因为有的时候会不自觉地陷入到一些细枝末节中去,而不能把握重点,所以本文将会自上而下地对Pytorch数据读取方法进行介绍。
自上而下理解三者关系
首先我们看一下DataLoader.next的源代码长什么样,为方便理解我只选取了num_works为0的情况(num_works简单理解就是能够并行化地读取数据)。
class DataLoader(object):
...
def __next__(self):
if self.num_workers == 0:
indices = next(self.sample_iter) # Sampler
batch = self.collate_fn([self.dataset[i] for i in indices]) # Dataset
if self.pin_memory:
batch = _utils.pin_memory.pin_memory_batch(batch)
return batch
在阅读上面代码前,我们可以假设我们的数据是一组图像,每一张图像对应一个index,那么如果我们要读取数据就只需要对应的index即可,即上面代码中的indices,而选取index的方式有多种,有按顺序的,也有乱序的,所以这个工作需要Sampler完成,现在你不需要具体的细节,后面会介绍,你只需要知道DataLoader和Sampler在这里产生关系。
那么Dataset和DataLoader在什么时候产生关系呢?没错就是下面一行。我们已经拿到了indices,那么下一步我们只需要根据index对数据进行读取即可了。
再下面的if语句的作用简单理解就是,如果pin_memory=True,那么Pytorch会采取一系列操作把数据拷贝到GPU,总之就是为了加速。
综上可以知道DataLoader,Sampler和Dataset三者关系如下:

在阅读后文的过程中,你始终需要将上面的关系记在心里,这样能帮助你更好地理解。
Sampler
参数传递
要更加细致地理解Sampler原理,我们需要先阅读一下DataLoader 的源代码,如下:
class DataLoader(object):
def __init__(self, dataset, batch_size=1, shuffle=False, sampler=None,
batch_sampler=None, num_workers=0, collate_fn=default_collate,
pin_memory=False, drop_last=False, timeout=0,
worker_init_fn=None)
可以看到初始化参数里有两种sampler:sampler和batch_sampler,都默认为None。前者的作用是生成一系列的index,而batch_sampler则是将sampler生成的indices打包分组,得到一个又一个batch的index。例如下面示例中,BatchSampler将SequentialSampler生成的index按照指定的batch size分组。
>>>in : list(BatchSampler(SequentialSampler(range(10)), batch_size=3, drop_last=False))
>>>out: [[0, 1, 2], [3, 4, 5], [6, 7, 8], [9]]
Pytorch中已经实现的Sampler有如下几种:
SequentialSamplerRandomSamplerWeightedSamplerSubsetRandomSampler
需要注意的是DataLoader的部分初始化参数之间存在互斥关系,这个你可以通过阅读源码更深地理解,这里只做总结:
- 如果你自定义了
batch_sampler,那么这些参数都必须使用默认值:batch_size,shuffle,sampler,drop_last. - 如果你自定义了
sampler,那么shuffle需要设置为False - 如果
sampler和batch_sampler都为None,那么batch_sampler使用Pytorch已经实现好的BatchSampler,而sampler分两种情况:- 若
shuffle=True,则sampler=RandomSampler(dataset) - 若
shuffle=False,则sampler=SequentialSampler(dataset)
- 若
如何自定义Sampler和BatchSampler?
仔细查看源代码其实可以发现,所有采样器其实都继承自同一个父类,即Sampler,其代码定义如下:
class Sampler(object):
r"""Base class for all Samplers.
Every Sampler subclass has to provide an :meth:`__iter__` method, providing a
way to iterate over indices of dataset elements, and a :meth:`__len__` method
that returns the length of the returned iterators.
.. note:: The :meth:`__len__` method isn't strictly required by
:class:`~torch.utils.data.DataLoader`, but is expected in any
calculation involving the length of a :class:`~torch.utils.data.DataLoader`.
"""
def __init__(self, data_source):
pass
def __iter__(self):
raise NotImplementedError
def __len__(self):
return len(self.data_source)
所以你要做的就是定义好__iter__(self)函数,不过要注意的是该函数的返回值需要是可迭代的。例如SequentialSampler返回的是iter(range(len(self.data_source)))。
另外BatchSampler与其他Sampler的主要区别是它需要将Sampler作为参数进行打包,进而每次迭代返回以batch size为大小的index列表。也就是说在后面的读取数据过程中使用的都是batch sampler。
Dataset
Dataset定义方式如下:
class Dataset(object):
def __init__(self):
...
def __getitem__(self, index):
return ...
def __len__(self):
return ...
上面三个方法是最基本的,其中__getitem__是最主要的方法,它规定了如何读取数据。但是它又不同于一般的方法,因为它是python built-in方法,其主要作用是能让该类可以像list一样通过索引值对数据进行访问。假如你定义好了一个dataset,那么你可以直接通过dataset[0]来访问第一个数据。在此之前我一直没弄清楚__getitem__是什么作用,所以一直不知道该怎么进入到这个函数进行调试。现在如果你想对__getitem__方法进行调试,你可以写一个for循环遍历dataset来进行调试了,而不用构建dataloader等一大堆东西了,建议学会使用ipdb这个库,非常实用!!!以后有时间再写一篇ipdb的使用教程。另外,其实我们通过最前面的Dataloader的__next__函数可以看到DataLoader对数据的读取其实就是用了for循环来遍历数据,不用往上翻了,我直接复制了一遍,如下:
class DataLoader(object):
...
def __next__(self):
if self.num_workers == 0:
indices = next(self.sample_iter)
batch = self.collate_fn([self.dataset[i] for i in indices]) # this line
if self.pin_memory:
batch = _utils.pin_memory.pin_memory_batch(batch)
return batch
我们仔细看可以发现,前面还有一个self.collate_fn方法,这个是干嘛用的呢?在介绍前我们需要知道每个参数的意义:
indices: 表示每一个iteration,sampler返回的indices,即一个batch size大小的索引列表self.dataset[i]: 前面已经介绍了,这里就是对第i个数据进行读取操作,一般来说self.dataset[i]=(img, label)
看到这不难猜出collate_fn的作用就是将一个batch的数据进行合并操作。默认的collate_fn是将img和label分别合并成imgs和labels,所以如果你的__getitem__方法只是返回 img, label,那么你可以使用默认的collate_fn方法,但是如果你每次读取的数据有img, box, label等等,那么你就需要自定义collate_fn来将对应的数据合并成一个batch数据,这样方便后续的训练步骤。
一文弄懂Pytorch的DataLoader, DataSet, Sampler之间的关系的更多相关文章
- pytorch中DataLoader, DataSet, Sampler之间的关系
转自:https://mp.weixin.qq.com/s/RTv0cUWvc0kuXBeNoXVu_A 自上而下理解三者关系 首先我们看一下DataLoader.__next__的源代码长什么样,为 ...
- 一文弄懂pytorch搭建网络流程+多分类评价指标
讲在前面,本来想通过一个简单的多层感知机实验一下不同的优化方法的,结果写着写着就先研究起评价指标来了,之前也写过一篇:https://www.cnblogs.com/xiximayou/p/13700 ...
- 【编码】彻底弄懂ASCII、Unicode、UTF-8之间的关系
计算机中的所有字符,说到底都是用二进制的0.1的排列组合来表示的,因此就需要有一个规范,来枚举规定每个字符对应哪个0.1的排列组合,这样的规范就是字符集. ASCII 全称是“美国信息交换标准码”(A ...
- 一文弄懂神经网络中的反向传播法——BackPropagation【转】
本文转载自:https://www.cnblogs.com/charlotte77/p/5629865.html 一文弄懂神经网络中的反向传播法——BackPropagation 最近在看深度学习 ...
- 一文弄懂-Netty核心功能及线程模型
目录 一. Netty是什么? 二. Netty 的使用场景 三. Netty通讯示例 1. Netty的maven依赖 2. 服务端代码 3. 客户端代码 四. Netty线程模型 五. Netty ...
- 一文弄懂-《Scalable IO In Java》
目录 一. <Scalable IO In Java> 是什么? 二. IO架构的演变历程 1. Classic Service Designs 经典服务模型 2. Event-drive ...
- 一文弄懂-BIO,NIO,AIO
目录 一文弄懂-BIO,NIO,AIO 1. BIO: 同步阻塞IO模型 2. NIO: 同步非阻塞IO模型(多路复用) 3.Epoll函数详解 4.Redis线程模型 5. AIO: 异步非阻塞IO ...
- 一文弄懂CGAffineTransform和CTM
一文弄懂CGAffineTransform和CTM 一些概念 坐标空间(系):视图(View)坐标空间与绘制(draw)坐标空间 CTM:全称current transformation matrix ...
- 【TensorFlow】一文弄懂CNN中的padding参数
在深度学习的图像识别领域中,我们经常使用卷积神经网络CNN来对图像进行特征提取,当我们使用TensorFlow搭建自己的CNN时,一般会使用TensorFlow中的卷积函数和池化函数来对图像进行卷积和 ...
随机推荐
- 牛逼哄哄的 Lambda 表达式,简洁优雅就是生产力!
阅读本文大概需要 4 分钟. 作者:Sevenvidia https://www.zhihu.com/question/20125256/answer/324121308 什么是Lambda? 我们知 ...
- Golang(二)基本概念
类型 18个基本类型:bool.string.rune.byte.int.uint.int8.uint.int8.int16.uint16.int32.uint32.int64.uint64.floa ...
- Pod Preset玩转K8S容器时区自动配置
缘由默认的情况,在K8S里启动一个容器,该容器的设置的时区是UTC0,但是对于很多客户而言,其主机环境并不在UTC0.例如中国客户在UTC8.如果不把容器的时区和主机主机设置为一致,则在查找日志等时候 ...
- IO流一些问题的总结
字节流的继承体系 字符流的继承体系 字符编码是什么?常见的字符编码表有哪些? 字符编码(英语:Character encoding)也称字集码,是把字符集中的字符编码为指定集合中某一对象,以便文本在计 ...
- k8s+Jenkins+GitLab-自动化部署项目
0.目录 整体架构目录:ASP.NET Core分布式项目实战-目录 k8s架构目录:Kubernetes(k8s)集群部署(k8s企业级Docker容器集群管理)系列目录 此文阅读目录: 1.闲聊 ...
- python 在cmd时执行celery -A tasks worker --loglevel=info报错:failed to create process怎么解决
在cmd命令前加 : python -m 命令(如:python -m celery -A tasks worker --loglevel=info) -m: 将库中的python模块用作脚本去运行, ...
- python(二)面向对象知识点
模块 别名 import my_module as xxx(别名) 先导入内置模块 再导入第三方模块 再导入自定义模块 from my_module(导入的文件) import *(变量) __all ...
- 遍历 HashSet 的方法
遍历 HashSet 的方法 import java.util.HashSet; import java.util.Iterator; import java.util.Set; public cla ...
- python模块、异常
1. python 模块 模块是一个包含所有你定义的函数和变量的文件,其后缀名是.py.模块可以被别的程序引入,以使用该模块中的函数等功能.这也是使用 python 标准库的方法.(有点像java的c ...
- 【拆分版】Docker-compose构建Kibana单实例,基于7.1.0
写在前边 今凌晨的时候已经把这整个Docker-compose构建的ELK集群跑起来了,有点没熬住,所以早上起来补文档,今天就上到公司测试服务器上测试了,好开森. 本文内容就是红框的部分,只是启动个K ...