均值归一化可以让算法运行得更好。

现在考虑这样一个情况:一个用户对所有的电影都没有评分,即上图所示 的Eve用户。现在我们要学习特征向量(假设n=2) 以及用户5的向量θ(5),因为用户Eve没有对任何电影打分,所以前面的一项为0,只有后面正则化的项,所以影响θ取值的只有后面的θ的正则化的项。所以要使它最小,即θ的取值为0.所以当我们预测用户5对所有电影的评分的时候,这时的评分都为0.所以我们会预测所有的电影的评分都为0.这样是毫无意义的,因为我们还是没有办法知道我们应该向用户5推荐什么电影(没有一部电影评分要高些),所有的电影预测为0也没有意义,因为事实是有的电影评分要高些,有的电影评分要低些。

均值归一化可以让我们解决上面的问题

首先计算每部电影所得评分的均值,将其放在向量u中,将所有的电影评分减去平均评分,即将每部电影的评分归一化,让其平均值变为0.

现在我们将这个评分数据集Y使用协同过滤算法,来学习θ(j)与x(i).

对于用户j对于电影i的评分,我们使用(θ(j))T(x(i))+u(i)

所以对于user5我们学习到的θ为[0,0],这样再加上u值,这样user5对于电影1的预测分为2.5,对于电影2的预测分也为2.5....它的意思其实是在说,如果用户5没有给任何电影评分,我们要做的是预测他对每部电影的评分为这些电影的平均得分

均值归一化Y,使得每行的平均值为0,如果有些电影是没有评分的,这种情况我们可以将Y的列进行均值归一化,但是这种情况可能不好,因为当一部电影没有一个用户对它进行评分时,这种情况我们是不会将这部电影推荐给用户的。所以当用户没有对一部电影进行评分时,我们可以使用行无值归一化来处理,这种情况比列均值归一化要常见些

总结

协同过滤算法的预处理过程--均值归一化,根据数据集的不同,可以让算法运行得更好

推荐系统(recommender systems):均值归一化(mean normalization)的更多相关文章

  1. [C11] 推荐系统(Recommender Systems)

    推荐系统(Recommender Systems) 问题阐述(Problem Formulation) 将 推荐系统 纳入这门课程来讲有以下两个原因: 第一.仅仅因为它是机器学习中的一个重要的应用.在 ...

  2. 斯坦福第十六课:推荐系统(Recommender Systems)

    16.1  问题形式化 16.2  基于内容的推荐系统 16.3  协同过滤 16.4  协同过滤算法 16.5  矢量化:低秩矩阵分解 16.6  推行工作上的细节:均值归一化 16.1  问题形式 ...

  3. Ng第十六课:推荐系统(Recommender Systems)

    16.1  问题形式化 16.2  基于内容的推荐系统 16.3  协同过滤 16.4  协同过滤算法 16.5  矢量化:低秩矩阵分解 16.6  推行工作上的细节:均值归一化 16.1  问题形式 ...

  4. 推荐系统(recommender systems):预测电影评分--问题描述

    推荐系统很重要的原因:1>它是机器学习的一个重要应用2>对于机器学习来说,特征是非常重要的,对于一些问题,存在一些算法能自动帮我选择一些优良的features,推荐系统就可以帮助我们做这样 ...

  5. 推荐系统(recommender systems):预测电影评分--构造推荐系统的一种方法:低秩矩阵分解(low rank matrix factorization)

    如上图中的predicted ratings矩阵可以分解成X与ΘT的乘积,这个叫做低秩矩阵分解. 我们先学习出product的特征参数向量,在实际应用中这些学习出来的参数向量可能比较难以理解,也很难可 ...

  6. 【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 16—Recommender Systems 推荐系统

    Lecture 16 Recommender Systems 推荐系统 16.1 问题形式化 Problem Formulation 在机器学习领域,对于一些问题存在一些算法, 能试图自动地替你学习到 ...

  7. 【RS】Matrix Factorization Techniques for Recommender Systems - 推荐系统的矩阵分解技术

    [论文标题]Matrix Factorization Techniques for Recommender Systems(2009,Published by the IEEE Computer So ...

  8. 【RS】Improving Implicit Recommender Systems with View Data - 使用浏览数据提升隐式推荐系统

    [论文标题]Improving Implicit Recommender Systems with View Data(IJCAI 18) [论文作者]Jingtao Ding  , Guanghui ...

  9. 【RS】Wide & Deep Learning for Recommender Systems - 广泛和深度学习的推荐系统

    [论文标题]Wide & Deep Learning for Recommender Systems (DLRS'16) [论文作者] Heng-Tze Cheng, Levent Koc, ...

随机推荐

  1. 【2019年05月13日】A股ROE最高排名

    个股滚动ROE = 最近4个季度的归母净利润 / ((期初归母净资产 + 期末归母净资产) / 2). 查看更多个股ROE最高排名. 兰州民百(SH600738) - 滚动ROE:86.45% - 滚 ...

  2. StringTable

    首先看这样一个面试题 // StringTable [ "a", "b" ,"ab" ] hashtable 结构,不能扩容 public ...

  3. [转帖]String、StringBuilder与StringBuffer

    String.StringBuilder与StringBuffer https://www.jianshu.com/p/37f3799bdb56 1.String String本质 String是不可 ...

  4. idea 跳转提示多个实现类

  5. DDR3(5):读写仲裁

    上一讲我们完成了读的控制,但是并不知道是否设计成功,必须读写结合才行.DDR3 的 app 端的命令总线是读写复用的,因此可能会存在读写冲突的时刻,为了解决此问题,必须进行分时读写,也就是我们说的仲裁 ...

  6. 乘法器——Wallace树型乘法器

    博主最近在看乘法器相关的知识,发现现在用的比较多的是booth编码的乘法器和Wallace树型乘法器,当然两者并不是互斥的关系,他们也可以结合使用.在这里给大家介绍一下Wallace树型乘法器,希望能 ...

  7. java数字前面补充0公共方法

  8. 通过静态发现方式部署 Etcd 集群

    在「etcd使用入门」一文中对etcd的基本知识点和安装做了一个简要的介绍,这次我们来说说如何部署一个etcd集群. etcd构建自身高可用集群主要有三种形式: 静态发现: 预先已知etcd集群中有哪 ...

  9. 批量修改Ms SqlServer 的default(默认值)

    原文:批量修改Ms SqlServer 的default(默认值) --1.取得数据库所有表的默认值: select t3.name as 表名,t1.name as 字段名,t2.text as 默 ...

  10. tomcat8 url包含|等特殊字符报错400的问题

    这个问题纠缠了我很久了,终于在今天早上解决了,感谢自己的不放弃和不断尝试的决心,我坚信,我可以找到解决方式!! 项目用的spring .spring mvc.hibernate框架,关于统一错误页面在 ...