推荐系统(recommender systems):均值归一化(mean normalization)
均值归一化可以让算法运行得更好。
现在考虑这样一个情况:一个用户对所有的电影都没有评分,即上图所示 的Eve用户。现在我们要学习特征向量(假设n=2) 以及用户5的向量θ(5),因为用户Eve没有对任何电影打分,所以前面的一项为0,只有后面正则化的项,所以影响θ取值的只有后面的θ的正则化的项。所以要使它最小,即θ的取值为0.所以当我们预测用户5对所有电影的评分的时候,这时的评分都为0.所以我们会预测所有的电影的评分都为0.这样是毫无意义的,因为我们还是没有办法知道我们应该向用户5推荐什么电影(没有一部电影评分要高些),所有的电影预测为0也没有意义,因为事实是有的电影评分要高些,有的电影评分要低些。
均值归一化可以让我们解决上面的问题
首先计算每部电影所得评分的均值,将其放在向量u中,将所有的电影评分减去平均评分,即将每部电影的评分归一化,让其平均值变为0.
现在我们将这个评分数据集Y使用协同过滤算法,来学习θ(j)与x(i).
对于用户j对于电影i的评分,我们使用(θ(j))T(x(i))+u(i)
所以对于user5我们学习到的θ为[0,0],这样再加上u值,这样user5对于电影1的预测分为2.5,对于电影2的预测分也为2.5....它的意思其实是在说,如果用户5没有给任何电影评分,我们要做的是预测他对每部电影的评分为这些电影的平均得分
均值归一化Y,使得每行的平均值为0,如果有些电影是没有评分的,这种情况我们可以将Y的列进行均值归一化,但是这种情况可能不好,因为当一部电影没有一个用户对它进行评分时,这种情况我们是不会将这部电影推荐给用户的。所以当用户没有对一部电影进行评分时,我们可以使用行无值归一化来处理,这种情况比列均值归一化要常见些
总结
协同过滤算法的预处理过程--均值归一化,根据数据集的不同,可以让算法运行得更好
推荐系统(recommender systems):均值归一化(mean normalization)的更多相关文章
- [C11] 推荐系统(Recommender Systems)
推荐系统(Recommender Systems) 问题阐述(Problem Formulation) 将 推荐系统 纳入这门课程来讲有以下两个原因: 第一.仅仅因为它是机器学习中的一个重要的应用.在 ...
- 斯坦福第十六课:推荐系统(Recommender Systems)
16.1 问题形式化 16.2 基于内容的推荐系统 16.3 协同过滤 16.4 协同过滤算法 16.5 矢量化:低秩矩阵分解 16.6 推行工作上的细节:均值归一化 16.1 问题形式 ...
- Ng第十六课:推荐系统(Recommender Systems)
16.1 问题形式化 16.2 基于内容的推荐系统 16.3 协同过滤 16.4 协同过滤算法 16.5 矢量化:低秩矩阵分解 16.6 推行工作上的细节:均值归一化 16.1 问题形式 ...
- 推荐系统(recommender systems):预测电影评分--问题描述
推荐系统很重要的原因:1>它是机器学习的一个重要应用2>对于机器学习来说,特征是非常重要的,对于一些问题,存在一些算法能自动帮我选择一些优良的features,推荐系统就可以帮助我们做这样 ...
- 推荐系统(recommender systems):预测电影评分--构造推荐系统的一种方法:低秩矩阵分解(low rank matrix factorization)
如上图中的predicted ratings矩阵可以分解成X与ΘT的乘积,这个叫做低秩矩阵分解. 我们先学习出product的特征参数向量,在实际应用中这些学习出来的参数向量可能比较难以理解,也很难可 ...
- 【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 16—Recommender Systems 推荐系统
Lecture 16 Recommender Systems 推荐系统 16.1 问题形式化 Problem Formulation 在机器学习领域,对于一些问题存在一些算法, 能试图自动地替你学习到 ...
- 【RS】Matrix Factorization Techniques for Recommender Systems - 推荐系统的矩阵分解技术
[论文标题]Matrix Factorization Techniques for Recommender Systems(2009,Published by the IEEE Computer So ...
- 【RS】Improving Implicit Recommender Systems with View Data - 使用浏览数据提升隐式推荐系统
[论文标题]Improving Implicit Recommender Systems with View Data(IJCAI 18) [论文作者]Jingtao Ding , Guanghui ...
- 【RS】Wide & Deep Learning for Recommender Systems - 广泛和深度学习的推荐系统
[论文标题]Wide & Deep Learning for Recommender Systems (DLRS'16) [论文作者] Heng-Tze Cheng, Levent Koc, ...
随机推荐
- promise、async和await
async:async function 声明将定义一个返回 AsyncFunction 对象的异步函数.当调用一个 async 函数时,会返回一个 Promise 对象.当这个 async 函数返回 ...
- Maven 教程(4)— 新建Maven项目
原文地址:https://blog.csdn.net/liupeifeng3514/article/details/79542203 我们以简单的helloworld来作为入门的实例,有些人说掌握了h ...
- AQS4源码
@SuppressWarnings("restriction") public abstract class AbstractQueuedSynchronizer1 extends ...
- golang知识精要(一)
一.第一章 命令行参数可通过os.Args访问,os.Args是切片 切片遵循左闭右开原则,如sl[1:3]不包含下标为3的元素 for循环两种方式 方式一: for initial; conditi ...
- 【java】java删除文件delete和deleteOnExit 方法的区别,为什么调用deleteOnExit无效?
delete() 是即刻删除 public boolean delete() { SecurityManager security = System.getSecurityManager(); if ...
- .net Dapper 实践系列(5) ---事务编辑(Layui+Ajax+Dapper+MySQL)
目录 写在前面 实践步骤 写在前面 上一小节,我们总结了根据Id查询多表数据,最后返回Json对象给前台的例子.接下来,在这一小节我们要实现多表编辑的操作. 实践步骤 因为上一小节以及创建了Edit视 ...
- Python删除列表元素的3种方法
之前看教程的时候比较着急,对这些基础掌握不好,过来回顾一下 使用del语句删除 lis = [1, 2, 3, 'a', 'b'] print(lis) del lis[0] print(lis) 输 ...
- IntelliJ IDEA live template 方法配置
** * <p></p> * 功能描述 * $params$ * @return $return$ * @author abc * @date $time$ $date$ * ...
- [Linux] Ubuntu Server18 python3.7 虚拟环境
Ubuntu Server18 python3.7 环境 Ubuntu Server18 默认是python3.6, 目前开发主要用python3.7. 所以想搭建python3.7环境. 试过几手动 ...
- 2019-08-01 Ajax实现从数据库读取表
php代码 <?php //用pdo连接数据库 $dsn = 'mysql:host=127.0.0.1;port=3306;charset=utf8;dbname=news'; //实例化PD ...