面试题

分库分表之后,id 主键如何处理?(唯一性,排序等)

面试官心理分析

其实这是分库分表之后你必然要面对的一个问题,就是 id 咋生成?因为要是分成多个表之后,每个表都是从 1 开始累加,那肯定不对啊,需要一个全局唯一的 id 来支持,排序问题等。所以这都是你实际生产环境中必须考虑的问题。

面试题剖析

基于数据库的实现方案

数据库自增 id

这个就是说你的系统里每次得到一个 id,都是往一个库的一个表里插入一条没什么业务含义的数据,然后获取一个数据库自增的一个 id。拿到这个 id 之后再往对应的分库分表里去写入。

这个方案的好处就是方便简单,谁都会用;缺点就是单库生成自增 id,要是高并发的话,就会有瓶颈的;如果你硬是要改进一下,那么就专门开一个服务出来,这个服务每次就拿到当前 id 最大值,然后自己递增几个 id,一次性返回一批 id,然后再把当前最大 id 值修改成递增几个 id 之后的一个值;但是无论如何都是基于单个数据库

适合的场景:你分库分表就俩原因,要不就是单库并发太高,要不就是单库数据量太大;除非是你并发不高,但是数据量太大导致的分库分表扩容,你可以用这个方案,因为可能每秒最高并发最多就几百,那么就走单独的一个库和表生成自增主键即可。

设置数据库 sequence 或者表自增字段步长

可以通过设置数据库 sequence 或者表的自增字段步长来进行水平伸缩。

比如说,现在有 8 个服务节点,每个服务节点使用一个 sequence 功能来产生 ID,每个 sequence 的起始 ID 不同,并且依次递增,步长都是 8。

适合的场景:在用户防止产生的 ID 重复时,这种方案实现起来比较简单,也能达到性能目标。但是服务节点固定,步长也固定,将来如果还要增加服务节点,就不好搞了。

UUID

好处就是本地生成,不要基于数据库来了;不好之处就是,UUID 太长了、占用空间大,作为主键性能太差了;更重要的是,UUID 不具有有序性,会导致 B+ 树索引在写的时候有过多的随机写操作(连续的 ID 可以产生部分顺序写),还有,由于在写的时候不能产生有顺序的 append 操作,而需要进行 insert 操作,将会读取整个 B+ 树节点到内存,在插入这条记录后会将整个节点写回磁盘,这种操作在记录占用空间比较大的情况下,性能下降明显。

适合的场景:如果你是要随机生成个什么文件名、编号之类的,你可以用 UUID,但是作为主键是不能用 UUID 的。

UUID.randomUUID().toString().replace(“-”, “”) -> sfsdf23423rr234sfdaf

获取系统当前时间

这个就是获取当前时间即可,但是问题是,并发很高的时候,比如一秒并发几千,会有重复的情况,这个是肯定不合适的。基本就不用考虑了。

适合的场景:一般如果用这个方案,是将当前时间跟很多其他的业务字段拼接起来,作为一个 id,如果业务上你觉得可以接受,那么也是可以的。你可以将别的业务字段值跟当前时间拼接起来,组成一个全局唯一的编号。

snowflake 算法

snowflake 算法是 twitter 开源的分布式 id 生成算法,采用 Scala 语言实现,是把一个 64 位的 long 型的 id,1 个 bit 是不用的  +  用其中的 41 bit 作为毫秒数  +  用 10 bit 作为工作机器 id  +  12 bit 作为序列号。

  • 1 bit:不用,为啥呢?因为二进制里第一个 bit 为如果是 1,那么都是负数,但是我们生成的 id 都是正数,所以第一个 bit 统一都是 0。
  • 41 bit:表示的是时间戳,单位是毫秒。41 bit 可以表示的数字多达 2^41 - 1,也就是可以标识 2^41 - 1 个毫秒值,换算成年就是表示69年的时间。
  • 10 bit:记录工作机器 id,代表的是这个服务最多可以部署在 2^10台机器上哪,也就是1024台机器。但是 10 bit 里 5 个 bit 代表机房 id,5 个 bit 代表机器 id。意思就是最多代表 2^5个机房(32个机房),每个机房里可以代表 2^5 个机器(32台机器)。
  • 12 bit:这个是用来记录同一个毫秒内产生的不同 id,12 bit 可以代表的最大正整数是 2^12 - 1 = 4096,也就是说可以用这个 12 bit 代表的数字来区分同一个毫秒内的 4096 个不同的 id。
0 | 0001100 10100010 10111110 10001001 01011100 00 | 10001 | 1 1001 | 0000 00000000
public class IdWorker {

    private long workerId;
private long datacenterId;
private long sequence; public IdWorker(long workerId, long datacenterId, long sequence) {
// sanity check for workerId
// 这儿不就检查了一下,要求就是你传递进来的机房id和机器id不能超过32,不能小于0
if (workerId > maxWorkerId || workerId < 0) {
throw new IllegalArgumentException(
String.format("worker Id can't be greater than %d or less than 0", maxWorkerId));
}
if (datacenterId > maxDatacenterId || datacenterId < 0) {
throw new IllegalArgumentException(
String.format("datacenter Id can't be greater than %d or less than 0", maxDatacenterId));
}
System.out.printf(
"worker starting. timestamp left shift %d, datacenter id bits %d, worker id bits %d, sequence bits %d, workerid %d",
timestampLeftShift, datacenterIdBits, workerIdBits, sequenceBits, workerId); this.workerId = workerId;
this.datacenterId = datacenterId;
this.sequence = sequence;
} private long twepoch = 1288834974657L; private long workerIdBits = 5L;
private long datacenterIdBits = 5L; // 这个是二进制运算,就是 5 bit最多只能有31个数字,也就是说机器id最多只能是32以内
private long maxWorkerId = -1L ^ (-1L << workerIdBits); // 这个是一个意思,就是 5 bit最多只能有31个数字,机房id最多只能是32以内
private long maxDatacenterId = -1L ^ (-1L << datacenterIdBits);
private long sequenceBits = 12L; private long workerIdShift = sequenceBits;
private long datacenterIdShift = sequenceBits + workerIdBits;
private long timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits;
private long sequenceMask = -1L ^ (-1L << sequenceBits); private long lastTimestamp = -1L; public long getWorkerId() {
return workerId;
} public long getDatacenterId() {
return datacenterId;
} public long getTimestamp() {
return System.currentTimeMillis();
} public synchronized long nextId() {
// 这儿就是获取当前时间戳,单位是毫秒
long timestamp = timeGen(); if (timestamp < lastTimestamp) {
System.err.printf("clock is moving backwards. Rejecting requests until %d.", lastTimestamp);
throw new RuntimeException(String.format(
"Clock moved backwards. Refusing to generate id for %d milliseconds", lastTimestamp - timestamp));
} if (lastTimestamp == timestamp) {
// 这个意思是说一个毫秒内最多只能有4096个数字
// 无论你传递多少进来,这个位运算保证始终就是在4096这个范围内,避免你自己传递个sequence超过了4096这个范围
sequence = (sequence + 1) & sequenceMask;
if (sequence == 0) {
timestamp = tilNextMillis(lastTimestamp);
}
} else {
sequence = 0;
} // 这儿记录一下最近一次生成id的时间戳,单位是毫秒
lastTimestamp = timestamp; // 这儿就是将时间戳左移,放到 41 bit那儿;
// 将机房 id左移放到 5 bit那儿;
// 将机器id左移放到5 bit那儿;将序号放最后12 bit;
// 最后拼接起来成一个 64 bit的二进制数字,转换成 10 进制就是个 long 型
return ((timestamp - twepoch) << timestampLeftShift) | (datacenterId << datacenterIdShift)
| (workerId << workerIdShift) | sequence;
} private long tilNextMillis(long lastTimestamp) {
long timestamp = timeGen();
while (timestamp <= lastTimestamp) {
timestamp = timeGen();
}
return timestamp;
} private long timeGen() {
return System.currentTimeMillis();
} // ---------------测试---------------
public static void main(String[] args) {
IdWorker worker = new IdWorker(1, 1, 1);
for (int i = 0; i < 30; i++) {
System.out.println(worker.nextId());
}
} }

怎么说呢,大概这个意思吧,就是说 41 bit 是当前毫秒单位的一个时间戳,就这意思;然后 5 bit 是你传递进来的一个机房 id(但是最大只能是 32 以内),另外 5 bit 是你传递进来的机器 id(但是最大只能是 32 以内),剩下的那个 12 bit序列号,就是如果跟你上次生成 id 的时间还在一个毫秒内,那么会把顺序给你累加,最多在 4096 个序号以内。

所以你自己利用这个工具类,自己搞一个服务,然后对每个机房的每个机器都初始化这么一个东西,刚开始这个机房的这个机器的序号就是 0。然后每次接收到一个请求,说这个机房的这个机器要生成一个 id,你就找到对应的 Worker 生成。

利用这个 snowflake 算法,你可以开发自己公司的服务,甚至对于机房 id 和机器 id,反正给你预留了 5 bit + 5 bit,你换成别的有业务含义的东西也可以的。

当然,你也可以用 : 1 个 bit 是不用的  +  用其中的 41 bit 作为毫秒数   +  12 bit 作为序列号  +  用 10 bit 作为工作机器 id,或者颠倒兑换一下顺序,怎么使用根据你自己的业务需要进行组合配用。

这个 snowflake 算法相对来说还是比较靠谱的,所以你要真是搞分布式 id 生成,如果是高并发啥的,那么用这个应该性能比较好,一般每秒几万并发的场景,也足够你用了。

本文在米兜公众号链接:
https://mp.weixin.qq.com/s/mt8bVpM57SsI-nvTRKxSKg

出处:https://www.cnblogs.com/midoujava/p/11610492.html

============================================================================================

如果仅仅是保证唯一性,自己写一个算法和规则,根据这个规则各个模块自己生成编号;

比如,之前写过一个简单的示例,使用xml文件作为配置生成固定格式的序列号的配置文件,程序根据算法生成指定格式的字符串。类似日期的格式化函数。

但是往往很多时候又需要把多份数据汇总、聚合等,还有排序等情况,这个时候需要根据生成的记录进行排序(也可考虑根据插入时间排序,各有利弊),还要考虑精度:有时、分、秒、厘秒、毫秒、微妙等等,当多台服务器进行时间同步到时候,还有需要靠网络延迟等情况。

所有,要根据自己的业务需要和自己能够承受的容错率来确定。

============================================================================================

本文已经收录自 JavaGuide (60k+ Star【Java学习+面试指南】 一份涵盖大部分Java程序员所需要掌握的核心知识。)

本文授权转载自:https://juejin.im/post/5d6fc8eff265da03ef7a324b ,作者:1点25。

ID是数据的唯一标识,传统的做法是利用UUID和数据库的自增ID,在互联网企业中,大部分公司使用的都是Mysql,并且因为需要事务支持,所以通常会使用Innodb存储引擎,UUID太长以及无序,所以并不适合在Innodb中来作为主键,自增ID比较合适,但是随着公司的业务发展,数据量将越来越大,需要对数据进行分表,而分表后,每个表中的数据都会按自己的节奏进行自增,很有可能出现ID冲突。这时就需要一个单独的机制来负责生成唯一ID,生成出来的ID也可以叫做分布式ID,或全局ID。下面来分析各个生成分布式ID的机制。

这篇文章并不会分析的特别详细,主要是做一些总结,以后再出一些详细某个方案的文章。

数据库自增ID

第一种方案仍然还是基于数据库的自增ID,需要单独使用一个数据库实例,在这个实例中新建一个单独的表:

表结构如下:

CREATE DATABASE `SEQID`;

CREATE TABLE SEQID.SEQUENCE_ID (
id bigint(20) unsigned NOT NULL auto_increment,
stub char(10) NOT NULL default '',
PRIMARY KEY (id),
UNIQUE KEY stub (stub)
) ENGINE=MyISAM;

可以使用下面的语句生成并获取到一个自增ID

begin;
replace into SEQUENCE_ID (stub) VALUES ('anyword');
select last_insert_id();
commit;

stub字段在这里并没有什么特殊的意义,只是为了方便的去插入数据,只有能插入数据才能产生自增id。而对于插入我们用的是replace,replace会先看是否存在stub指定值一样的数据,如果存在则先delete再insert,如果不存在则直接insert。

这种生成分布式ID的机制,需要一个单独的Mysql实例,虽然可行,但是基于性能与可靠性来考虑的话都不够,业务系统每次需要一个ID时,都需要请求数据库获取,性能低,并且如果此数据库实例下线了,那么将影响所有的业务系统。

为了解决数据库可靠性问题,我们可以使用第二种分布式ID生成方案。

数据库多主模式

如果我们两个数据库组成一个主从模式集群,正常情况下可以解决数据库可靠性问题,但是如果主库挂掉后,数据没有及时同步到从库,这个时候会出现ID重复的现象。我们可以使用双主模式集群,也就是两个Mysql实例都能单独的生产自增ID,这样能够提高效率,但是如果不经过其他改造的话,这两个Mysql实例很可能会生成同样的ID。需要单独给每个Mysql实例配置不同的起始值和自增步长。

第一台Mysql实例配置:

set @@auto_increment_offset = 1;     -- 起始值
set @@auto_increment_increment = 2; -- 步长

第二台Mysql实例配置:

set @@auto_increment_offset = 2;     -- 起始值
set @@auto_increment_increment = 2; -- 步长

经过上面的配置后,这两个Mysql实例生成的id序列如下: mysql1,起始值为1,步长为2,ID生成的序列为:1,3,5,7,9,... mysql2,起始值为2,步长为2,ID生成的序列为:2,4,6,8,10,...

对于这种生成分布式ID的方案,需要单独新增一个生成分布式ID应用,比如DistributIdService,该应用提供一个接口供业务应用获取ID,业务应用需要一个ID时,通过rpc的方式请求DistributIdService,DistributIdService随机去上面的两个Mysql实例中去获取ID。

实行这种方案后,就算其中某一台Mysql实例下线了,也不会影响DistributIdService,DistributIdService仍然可以利用另外一台Mysql来生成ID。

但是这种方案的扩展性不太好,如果两台Mysql实例不够用,需要新增Mysql实例来提高性能时,这时就会比较麻烦。

现在如果要新增一个实例mysql3,要怎么操作呢? 第一,mysql1、mysql2的步长肯定都要修改为3,而且只能是人工去修改,这是需要时间的。 第二,因为mysql1和mysql2是不停在自增的,对于mysql3的起始值我们可能要定得大一点,以给充分的时间去修改mysql1,mysql2的步长。 第三,在修改步长的时候很可能会出现重复ID,要解决这个问题,可能需要停机才行。

为了解决上面的问题,以及能够进一步提高DistributIdService的性能,如果使用第三种生成分布式ID机制。

号段模式

我们可以使用号段的方式来获取自增ID,号段可以理解成批量获取,比如DistributIdService从数据库获取ID时,如果能批量获取多个ID并缓存在本地的话,那样将大大提供业务应用获取ID的效率。

比如DistributIdService每次从数据库获取ID时,就获取一个号段,比如(1,1000],这个范围表示了1000个ID,业务应用在请求DistributIdService提供ID时,DistributIdService只需要在本地从1开始自增并返回即可,而不需要每次都请求数据库,一直到本地自增到1000时,也就是当前号段已经被用完时,才去数据库重新获取下一号段。

所以,我们需要对数据库表进行改动,如下:

CREATE TABLE id_generator (
id int(10) NOT NULL,
current_max_id bigint(20) NOT NULL COMMENT '当前最大id',
increment_step int(10) NOT NULL COMMENT '号段的长度',
PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;

这个数据库表用来记录自增步长以及当前自增ID的最大值(也就是当前已经被申请的号段的最后一个值),因为自增逻辑被移到DistributIdService中去了,所以数据库不需要这部分逻辑了。

这种方案不再强依赖数据库,就算数据库不可用,那么DistributIdService也能继续支撑一段时间。但是如果DistributIdService重启,会丢失一段ID,导致ID空洞。

为了提高DistributIdService的高可用,需要做一个集群,业务在请求DistributIdService集群获取ID时,会随机的选择某一个DistributIdService节点进行获取,对每一个DistributIdService节点来说,数据库连接的是同一个数据库,那么可能会产生多个DistributIdService节点同时请求数据库获取号段,那么这个时候需要利用乐观锁来进行控制,比如在数据库表中增加一个version字段,在获取号段时使用如下SQL:

update id_generator set current_max_id=#{newMaxId}, version=version+1 where version = #{version}

因为newMaxId是DistributIdService中根据oldMaxId+步长算出来的,只要上面的update更新成功了就表示号段获取成功了。

为了提供数据库层的高可用,需要对数据库使用多主模式进行部署,对于每个数据库来说要保证生成的号段不重复,这就需要利用最开始的思路,再在刚刚的数据库表中增加起始值和步长,比如如果现在是两台Mysql,那么 mysql1将生成号段(1,1001],自增的时候序列为1,3,4,5,7.... mysql1将生成号段(2,1002],自增的时候序列为2,4,6,8,10...

更详细的可以参考滴滴开源的TinyId:github.com/didi/tinyid…

在TinyId中还增加了一步来提高效率,在上面的实现中,ID自增的逻辑是在DistributIdService中实现的,而实际上可以把自增的逻辑转移到业务应用本地,这样对于业务应用来说只需要获取号段,每次自增时不再需要请求调用DistributIdService了。

雪花算法

上面的三种方法总的来说是基于自增思想的,而接下来就介绍比较著名的雪花算法-snowflake。

我们可以换个角度来对分布式ID进行思考,只要能让负责生成分布式ID的每台机器在每毫秒内生成不一样的ID就行了。

snowflake是twitter开源的分布式ID生成算法,是一种算法,所以它和上面的三种生成分布式ID机制不太一样,它不依赖数据库。

核心思想是:分布式ID固定是一个long型的数字,一个long型占8个字节,也就是64个bit,原始snowflake算法中对于bit的分配如下图:

  • 第一个bit位是标识部分,在java中由于long的最高位是符号位,正数是0,负数是1,一般生成的ID为正数,所以固定为0。
  • 时间戳部分占41bit,这个是毫秒级的时间,一般实现上不会存储当前的时间戳,而是时间戳的差值(当前时间-固定的开始时间),这样可以使产生的ID从更小值开始;41位的时间戳可以使用69年,(1L << 41) / (1000L * 60 * 60 * 24 * 365) = 69年
  • 工作机器id占10bit,这里比较灵活,比如,可以使用前5位作为数据中心机房标识,后5位作为单机房机器标识,可以部署1024个节点。
  • 序列号部分占12bit,支持同一毫秒内同一个节点可以生成4096个ID

根据这个算法的逻辑,只需要将这个算法用Java语言实现出来,封装为一个工具方法,那么各个业务应用可以直接使用该工具方法来获取分布式ID,只需保证每个业务应用有自己的工作机器id即可,而不需要单独去搭建一个获取分布式ID的应用。

snowflake算法实现起来并不难,提供一个github上用java实现的:github.com/beyondfengy…

在大厂里,其实并没有直接使用snowflake,而是进行了改造,因为snowflake算法中最难实践的就是工作机器id,原始的snowflake算法需要人工去为每台机器去指定一个机器id,并配置在某个地方从而让snowflake从此处获取机器id。

但是在大厂里,机器是很多的,人力成本太大且容易出错,所以大厂对snowflake进行了改造。

百度(uid-generator)

github地址:uid-generator

uid-generator使用的就是snowflake,只是在生产机器id,也叫做workId时有所不同。

uid-generator中的workId是由uid-generator自动生成的,并且考虑到了应用部署在docker上的情况,在uid-generator中用户可以自己去定义workId的生成策略,默认提供的策略是:应用启动时由数据库分配。说的简单一点就是:应用在启动时会往数据库表(uid-generator需要新增一个WORKER_NODE表)中去插入一条数据,数据插入成功后返回的该数据对应的自增唯一id就是该机器的workId,而数据由host,port组成。

对于uid-generator中的workId,占用了22个bit位,时间占用了28个bit位,序列化占用了13个bit位,需要注意的是,和原始的snowflake不太一样,时间的单位是秒,而不是毫秒,workId也不一样,同一个应用每重启一次就会消费一个workId。

具体可参考github.com/baidu/uid-g…

美团(Leaf)

github地址:Leaf

美团的Leaf也是一个分布式ID生成框架。它非常全面,即支持号段模式,也支持snowflake模式。号段模式这里就不介绍了,和上面的分析类似。

Leaf中的snowflake模式和原始snowflake算法的不同点,也主要在workId的生成,Leaf中workId是基于ZooKeeper的顺序Id来生成的,每个应用在使用Leaf-snowflake时,在启动时都会都在Zookeeper中生成一个顺序Id,相当于一台机器对应一个顺序节点,也就是一个workId。

总结

总得来说,上面两种都是自动生成workId,以让系统更加稳定以及减少人工成功。

Redis

这里额外再介绍一下使用Redis来生成分布式ID,其实和利用Mysql自增ID类似,可以利用Redis中的incr命令来实现原子性的自增与返回,比如:

127.0.0.1:6379> set seq_id 1     // 初始化自增ID为1
OK
127.0.0.1:6379> incr seq_id // 增加1,并返回
(integer) 2
127.0.0.1:6379> incr seq_id // 增加1,并返回
(integer) 3

使用redis的效率是非常高的,但是要考虑持久化的问题。Redis支持RDB和AOF两种持久化的方式。

RDB持久化相当于定时打一个快照进行持久化,如果打完快照后,连续自增了几次,还没来得及做下一次快照持久化,这个时候Redis挂掉了,重启Redis后会出现ID重复。

AOF持久化相当于对每条写命令进行持久化,如果Redis挂掉了,不会出现ID重复的现象,但是会由于incr命令过得,导致重启恢复数据时间过长。

出处:https://www.cnblogs.com/javaguide/p/11824105.html

分布式中的分库分表之后,ID 主键如何处理?的更多相关文章

  1. 分库分布的几件小事(四)分库分表的id主键生成

    1.问题 其实这是分库分表之后你必然要面对的一个问题,就是id咋生成?因为要是分成多个表之后,每个表都是从1开始累加,那肯定不对啊,需要一个全局唯一的id来支持.所以这都是你实际生产环境中必须考虑的问 ...

  2. Mysql中的分库分表

    mysql中的分库分表分库:减少并发问题分表:降低了分布式事务分表 1.垂直分表 把其中的不常用的基础信息提取出来,放到一个表中通过id进行关联.降低表的大小来控制性能,但是这种方式没有解决高数据量带 ...

  3. 面试官:分库分表之后,id 主键如何处理?

    面试题 分库分表之后,id 主键如何处理? 面试官心理分析 其实这是分库分表之后你必然要面对的一个问题,就是 id 咋生成?因为要是分成多个表之后,每个表都是从 1 开始累加,那肯定不对啊,需要一个全 ...

  4. 分库分表之后,id 主键如何处理?

    其实这是分库分表之后你必然要面对的一个问题,就是 id 咋生成?因为要是分成多个表之后,每个表都是从 1 开始累加,那肯定不对啊,需要一个全局唯一的 id 来支持.所以这都是你实际生产环境中必须考虑的 ...

  5. 面试系列38 分库分表之后,id主键如何处理?

    (1)数据库自增id 这个就是说你的系统里每次得到一个id,都是往一个库的一个表里插入一条没什么业务含义的数据,然后获取一个数据库自增的一个id.拿到这个id之后再往对应的分库分表里去写入. 这个方案 ...

  6. 分库分表之后,id 主键如何处理

    基于数据库的实现方案 数据库自增 id 这个就是说你的系统里每次得到一个 id,都是往一个库的一个表里插入一条没什么业务含义的数据,然后获取一个数据库自增的一个 id.拿到这个 id 之后再往对应的分 ...

  7. 分库分表之后,id主键如何处理?

    (1)数据库自增id 这个就是说你的系统里每次得到一个id,都是往一个库的一个表里插入一条没什么业务含义的数据,然后获取一个数据库自增的一个id.拿到这个id之后再往对应的分库分表里去写入. 这个方案 ...

  8. Hibernate学习笔记(三)Hibernate生成表单ID主键生成策略

    一. Xml方式 <id>标签必须配置在<class>标签内第一个位置.由一个字段构成主键,如果是复杂主键<composite-id>标签 被映射的类必须定义对应数 ...

  9. oracle中查看一张表是否有主键,主键在哪个字段上

    利用Oracle中系统自带的两个视图可以实现查看表中主键信息,语句如下:select a.constraint_name, a.column_name from user_cons_columns a ...

随机推荐

  1. [技术博客]海报图片生成——小程序canvas画布

    目录 背景介绍 canvas简介 代码实现 难点讲解 圆角矩形裁剪失败之PS的妙用 编码不要过硬 对过长的文字进行截取 真机首次生成时字体不对 drawImage只能使用本地图片 背景介绍 目标:利用 ...

  2. pytest学习笔记二 fixtrue

    前言 官方文档关于fixture功能的解释如下: The purpose of test fixtures is to provide a fixed baseline upon which test ...

  3. 【2019年05月07日】A股最便宜的股票

    新钢股份(SH600782) - 当前便宜指数:193.2 - 滚动扣非市盈率PE:2.99 - 滚动市净率PB:0.87 - 动态年化股息收益率:1.68%- 新钢股份(SH600782)的历史市盈 ...

  4. 阉割的List

    实在忍不住,模仿STL写了个阉割版的List,还没加迭代器,等搞完STL源码再说吧. #pragma once #include <stdexcept> namespace vlyf { ...

  5. 【C++】虚函数的实现机制

    一.什么是虚函数? 虚函数是在类中由virtual关键字声明的成员函数,并且每一个含有虚函数的类都至少有一个与之对应的虚函数表,其中存放着该类所有虚函数对应的函数指针 在基类中进行如下定义: virt ...

  6. Java自学-类和对象 类属性

    Java的类属性和对象属性 当一个属性被static修饰的时候,就叫做类属性,又叫做静态属性 当一个属性被声明成类属性,那么所有的对象,都共享一个值 与对象属性对比: 不同对象的 对象属性 的值都可能 ...

  7. Python协程深入理解(转)

    原文:https://www.cnblogs.com/zhaof/p/7631851.html 从语法上来看,协程和生成器类似,都是定义体中包含yield关键字的函数.yield在协程中的用法: 在协 ...

  8. windows2008 开启SNMP服务

    现在很多企业和公司管理服务器时都是通过网络监控软件对服务器的状态进行监控,在监控的时候大多是通过SNMP协议(简单网络管理协议)进行的,那么在我们的服务器端就需要开启此项服务,并进行简单的设置. 以下 ...

  9. C#拼音帮助类

    如果使用此帮助类需要引用 using Microsoft.International.Converters.PinYinConverter; using NPinyin; 可以在NuGet里面下载 1 ...

  10. 服务器收不到支付宝notify_url异步回调请求的问题 支付宝notify 异步通知与https的问题

    需确认页面是http还是https,如果是https,那么需要安装ssl证书,证书要求有如下:要求“正规的证书机构签发,不支持自签名”. 然后赶快,按照支付宝,宝爷的要求,去自检了一下自家的证书,下面 ...