Problem 3 二维差分
$des$
考虑一个 n ∗ n 的矩阵 A,初始所有元素均为 0。
执行 q 次如下形式的操作: 给定 4 个整数 r,c,l,s, 对于每个满足 x ∈ [r,r+l), y ∈ [c,x−r+c]
的元素 (x,y),将权值增加 s。也就是,给一个左上顶点为 (r,c)、直角边长为 l 的下三角区域加
上 s。
输出最终矩阵的元素异或和。
$sol$
每次加减是一个等腰直角三角形
考虑对每行查分
即对垂直于 x 轴的腰上的每个点 +1 ,所有斜边的后一个点 -1
这样的话,每行形成了查分数组
简化上面的过程
对腰上的点 +1 时同样也可以查分进行
对斜边上的点同理,只不过还原时 $a_{i, j} += a_{i - 1, j - 1}$
注意判断边界条件
$code$
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <cstring>
#include <string>
#include <cstdlib> using namespace std;
const int N = ; #define gc getchar()
inline int read() {
int x = ; char c = gc;
while(c < '' || c > '') c = gc;
while(c >= '' && c <= '') x = x * + c - '', c = gc;
return x;
}
#undef gc #define Rep(i, a, b) for(int i = a; i <= b; i ++) #define LL long long LL add[N][N], cut[N][N];
struct Node {
int r, c, l, s;
} Ask[(int)3e5 + ];
int n, q;
LL A[N][N], B[N][N]; int main() {
n = read(), q = read();
Rep(qq, , q) Ask[qq] = (Node) {
read(), read(), read(), read()
};
Rep(i, , q) {
int r = Ask[i].r, c = Ask[i].c, l = Ask[i].l, s = Ask[i].s;
add[r][c] += s; add[r + l][c] -= s;
cut[r][c + ] += s; cut[r + l][c + l + ] -= s;
}
Rep(j, , n) {
Rep(i, , n) add[i][j] += add[i - ][j];
}
Rep(i, , n) {
Rep(j, , n) cut[i][j] += cut[i - ][j - ];
}
Rep(i, , n) {
Rep(j, , n) A[i][j] += A[i][j - ] + add[i][j] - cut[i][j];
}
LL Answer = ;
Rep(i, , n) Rep(j, , n) Answer ^= A[i][j];
cout << Answer;
return ;
}
Problem 3 二维差分的更多相关文章
- 洛谷 P3397 地毯 【二维差分标记】
题目背景 此题约为NOIP提高组Day2T1难度. 题目描述 在n*n的格子上有m个地毯. 给出这些地毯的信息,问每个点被多少个地毯覆盖. 输入输出格式 输入格式: 第一行,两个正整数n.m.意义如题 ...
- HDU - 6514 Monitor(二维差分)
题意 给定一个\(n×m\)的矩阵.(\(n×m <= 1e7\)). \(p\)次操作,每次可以在这个矩阵中覆盖一个矩形. \(q\)次询问,每次问一个矩形区域中,是否所有的点都被覆盖. 解析 ...
- NOI 2012 魔幻棋盘 | 二维差分 + 二维线段树
题目:luogu 2086 二维线段树,按套路差分原矩阵,gcd( x1, x2, ……, xn ) = gcd( xi , x2 - x1 , ……, xn - xn-1 ),必须要有一个原数 xi ...
- Codeforces 1262E Arson In Berland Forest(二维前缀和+二维差分+二分)
题意是需要求最大的扩散时间,最后输出的是一开始的火源点,那么我们比较容易想到的是二分找最大值,但是我们在这满足这样的点的时候可以发现,在当前扩散时间k下,以这个点为中心的(2k+1)2的正方形块内必 ...
- Monitor HDU6514 二维差分入门学习
Monitor HDU 6514 二维差分入门学习 题意 小腾有\(n*m\)的田地,但是有小偷来偷东西,在一片矩形区域上,有一部分区域是监控可以覆盖到的,这部分区域由一个或多个包含于该矩形区域的小矩 ...
- Gym 102028J 扫描线/二维差分 + 解方程
题意:有一个二维平面,以及n个操作,每个操作会选择一个矩形,使得这个二维平面的一部分被覆盖.现在你可以取消其中的2个操作,问最少有多少块地方会被覆盖? 思路:官方题解简洁明了,就不细说了:https: ...
- Codeforces Round #578 (Div. 2) 二维差分 可做模板
题意: 在n*n的矩阵中,你可以选择一个k*k的子矩阵,然后将这个子矩阵中的所有B全部变为W,问你怎么选择这个子矩阵使得最终的矩阵中某一行全是W或者某一列全是W的个数最多 题解:考虑每一行和每一列,对 ...
- 2020ICPC·小米 网络选拔赛第一场 J.Matrix Subtraction (贪心,二维差分)
题意:给一个\(nXm\)的矩阵,可以选取\(aXb\)的子矩阵,使子矩阵中的所有元素减一,问最后是否能使矩阵中所有元素变为\(0\). 题解:首先贪心,我们看最左上角的元素,如果\(g[1][1]\ ...
- 220514 T2 画画 (二维差分)
首先我们需要特判只涂了一种颜色的情况: (1)k=1,此时答案就是1:(2)k>1,涂的这种颜色肯定不能是第一个,答案是k-1; 对于其他正常情况,我们对于每个颜色找到一个最小的矩形(这个矩形内 ...
随机推荐
- Java多线程系列——锁的那些事
引入 Java提供了种类丰富的锁,每种锁因其特性的不同,在适当的场景下能够展现出非常高的效率. 下面先带大家来总体预览一下锁的分类图 java锁的具体实现类 1.乐观锁 VS 悲观锁 乐观锁与悲观锁是 ...
- python基础_mysql建表、编辑、删除、查询、更新
1.建一张学生表 包含(id,name,age,sex)2.增加四条数据3.查询表中sex为男的数据4.删除id =3的数据,5.将sex为女的,修改为男 create: CREATE TABLE d ...
- Ubuntu 18.04 Server 配置静态ip
刚在虚拟机里面状态了一个 Ubunut 18.04 Server 作为我的服务器,我习惯使用静态ip首先再virtualbox中设置虚拟机网络的连接方式为桥接模式进入ubuntu虚拟机根据我的印象直接 ...
- 关于Shareppoint客户端对象模型和Shareppoint根据内部名称获取字段值的随笔
实际上,每个SharePoint字段实际上有两个名称,一个是“标题”(Title,有时候也把它叫做“显示名称”),一个是“内部名称”(Internal Name).平时用户在列表视图界面上看到的,都是 ...
- Flutter裁剪图片
最近在学习中需要用到裁剪图片,记录一下解决方法 思路: 使用canvas的drawImageRect()方法,对Image进行裁剪,这里的Image需要 'dart:ui' 库中的Image. 1. ...
- kubernetes第八章--NFS PersistentVolume
- z7z8记录
http://www.ypppt.com/ ppt模板地址
- js编写日历的思路
首先写出一个日历我们需要考虑以下2个问题: 每个月的总天数 每个月的第一天周几 这里提供了一个判断平年闰年2月份天数的方法: function leapYear(year) { return (yea ...
- [SOLVED] “Error 1067: The process terminated unexpectedly” on Windows 10, 7 & 8
Windows background services enable Windows features function properly. If some errors happen to serv ...
- 部署python项目到linux服务器
最近用Python写了个外挂,需要部署到Linux环境的服务器上,由于之前本地开发时使用virtualenv,使用这个虚拟环境有个好处是项目中依赖的库不会是全局的,只在当前项目的目录下有效,因为我是M ...