【题解】选数字 [51nod1354]
【题解】选数字 [51nod1354]
【题目描述】
共 \(T\) 组测试点,每一组给定一个长度为 \(n\) 的序列和一个整数 \(K\),找出有多少子序列满足子序列中所有元素乘积恰好等于K,答案对 \(1e9+7\) 取模。
【样例】
样例输入:
2
3 3
1 1 3
3 6
2 3 6
样例输出:
4
2
【数据范围】
\(100\%\) \(1 \leqslant T \leqslant 20,\) \(1 \leqslant N \leqslant 1000,\) \(2 \leqslant K \leqslant 10^8,\) \(1 \leqslant a[i] \leqslant K\)
【分析】
考虑 \(01\) 背包,用 \(dp[j]\) 表示乘积等于 \(j\) 的子序列数,原序列中的 \(n\) 个数就是 \(n\) 个物品,其数值就是体积。
\(K\) 的范围有 \(10^8\) 辣莫大,但是会对答案造成影响的只有一部分可整除 \(K\) 的数的 \(dp\) 值,所以还可以优化。
为防止爆空间,\(dp\) 数组开 \(map\) 类型,用指针访问,并且保证里面存的决策点都是可以整除 \(K\) 的数,每次要加入新的物品时判断一下,只有当物品体积 \(a\) 和 \(a\) 乘以决策点都可整除 \(K\) 时,才让该物品使用该决策点。
即 \(dp[a*x]+=dp[x](a|K,x|K,a*x|K)\) 。
时间复杂度为 \(O(T*n*p)\),其中 \(p\) 为 \(K\) 的正约数个数。
【Code】
#include<algorithm>
#include<cstdio>
#include<map>
#define Re register int
using namespace std;
const int P=1e9+7;
const int N=1003;
int x,n,K,T,t,o,a;
map<int,int>dp,tmp;
map<int,int>::iterator it;
inline void in(Re &x){
int f=0;x=0;char c=getchar();
while(c<'0'||c>'9')f|=c=='-',c=getchar();
while(c>='0'&&c<='9')x=(x<<1)+(x<<3)+(c^48),c=getchar();
x=f?-x:x;
}
int main(){
in(T);
while(T--){
in(n),in(K);
dp.clear();
for(Re i=1;i<=n;++i){
in(a);
if(K%a)continue;
tmp=dp;
for(it=tmp.begin();it!=tmp.end();++it)
if(a<=K/(x=it->first)&&K/x%a==0)
(dp[a*x]+=it->second)%=P;
(dp[a]+=1)%=P;
}
printf("%d\n",dp[K]);
}
}
【题解】选数字 [51nod1354]的更多相关文章
- 51nod1354 选数字
01背包tle. 解题报告(by System Message) 类似于背包的DP,以乘积为状态.先把等选数字里面不是K约数的去掉.然后找出K的约数,进行离散化.然后dp[i][j]表示前i个数字乘积 ...
- 【题解】数字组合(NTT+组合 滑稽)
[题解]数字组合(NTT+组合 滑稽) 今天实践一下谢总讲的宰牛刀233,滑稽. \((1+x)(1+x)(1+x)\)的\(x^2\)系数就代表了有三个一快钱硬币构成的两块钱的方案数量. 很好理解, ...
- 51 Nod 1354 选数字(体现动态规划的本质)
1354 选数字 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题 收藏 关注 当给定一个序列a[0],a[1],a[2],...,a[n-1] 和一个整数K时 ...
- Qbxt 模拟题 day3(am) T3 选数字 (select)(贪心)
选数字 (select Time Limit:3000ms Memory Limit:64MB 题目描述 LYK 找到了一个 n*m 的矩阵,这个矩阵上都填有一些数字,对于第 i 行第 j 列的位置上 ...
- 题解-[SDOI2017]数字表格
题解-[SDOI2017]数字表格 前置知识: 莫比乌斯反演</> [SDOI2017]数字表格 \(T\) 组测试数据,\(f_i\) 表示 \(\texttt{Fibonacci}\) ...
- 51nod P1354 选数字 题解
每日一题 day8 打卡 Analysis 背包+离散化 这题是我们一次模拟赛的T2,结果我的暴力全TLE了. 关键是如果将两个因数的乘积离散化在因数数组中之后等于这个乘积本身,说明a[j]*in离散 ...
- 题解 [ZJOI2010]数字计数
传送门<-洛谷版 电梯<-bzoj版 这份代码是新手友好版,也算是自用版,注释自认为写的很详细. 希望对要学数位dp的人有所帮助 这份题解是记忆化搜索版的数位DP,个人还是比较建议用这种方 ...
- 1354 选数字 DP背包 + 数学剪枝
http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1354&judgeId=187448 其实这题和在若干个数字中,选 ...
- BUPT2017 wintertraining(15) #3 题解
我觉得好多套路我都不会ヘ(;´Д`ヘ) 题解拖到情人节后一天才完成,还有三场没补完,真想打死自己.( ˙-˙ ) A - 温泉旅店 UESTC - 878 题意 有n张牌,两人都可以从中拿出任意 ...
随机推荐
- OKGo vs RxHttpUtils ...
jeasonlzy/okhttp-OkGohttps://github.com/jeasonlzy/okhttp-OkGo Android OkGo基本操作https://www.jianshu.co ...
- Android源码分析(十二)-----Android源码中如何自定义TextView实现滚动效果
一:如何自定义TextView实现滚动效果 继承TextView基类 重写构造方法 修改isFocused()方法,获取焦点. /* * Copyright (C) 2015 The Android ...
- Manacher算法(马拉车)求最长回文子串
Manacher算法求最长回文字串 算法思路 按照惯例((・◇・)?),这里只是对算法的一些大体思路做一个描述,因为找到了相当好理解的博客可以参考(算法细节见参考文章). 一般而言,我们的判断回文算法 ...
- python接口自动化17-multipart/form-data表单提交
前言 multipart/form-data这种格式官方文档给的参考案例比较简单,实际情况中遇到会比较复杂,本篇讲解multipart/form-data的表单如何提交,非图片上传 禅道提交bug 1 ...
- JavaScript 实用工具库 : lodashjs
首页地址:https://www.lodashjs.com/
- 排序算法-插入排序(Java)
package com.rao.linkList; import java.util.Arrays; /** * @author Srao * @className InsertSort * @dat ...
- ESA2GJK1DH1K微信小程序篇: 小程序实现MQTT封包源码使用说明
说明 我为了后期能够快速的让小程序实现MQTT,我做了一个MQTT的封装. 功能的封装有助于后期快速的开发,还方便咱维护. 我后期的所有代码皆使用此封装库, 这一节,我就详细的介绍我封装的MQTT.j ...
- .NET基础知识(02)-拆箱与装箱
装箱和拆箱几乎是所有面试题中必考之一,看上去简单,就往往容易被忽视.其实它一点都不简单的,一个简单的问题也可以从多个层次来解读. 常见面试题目: 1.什么是拆箱和装箱? 2.什么是箱子? 3.箱子放在 ...
- 回溯法 | n皇后问题
今早上看了一篇英语阅读之后,莫名有些空虚寂寞冷.拿出算法书,研读回溯法.我觉得n皇后问题完全可以用暴力方式,即先对n个数进行全排列,得到所有结果的下标组合,问题规模为n!. 全排列花了比较久的时间才编 ...
- 创建java类中类出现is not an enclosing class
public class A { public class B { } }; 需要实例B类时,按照正逻辑是,A.B ab = new A.B(); 那么编译器就会出现一个错误--"is no ...