loj2058 「TJOI / HEOI2016」求和 NTT
loj2058 「TJOI / HEOI2016」求和 NTT
链接
思路
\]
\]
\]
\]
先看后边
\]
\]
\]
\(f(j-k)=\sum\limits_{i=0}^{n}(j-k)^{i}\)等比数列求和。
\]
nice,这很卷积,用NTT预处理就好了,然后后面的式子就很好求ans了。
## 坑点
f(x)要特判q=1和q=0。因为公式本来就不能做
其他的照的推出来的式子做就可以辣
## 代码
```cpp
#include <bits/stdc++.h>
using namespace std;
const int N=4e5+7,mod=998244353;
int n,ans,jc[N],a[N],b[N],limit=1,p,r[N];
int q_pow(int a,int b) {
int ans=1;
while(b) {
if(b&1) ans=1LL*a*ans%mod;
a=1LL*a*a%mod;
b>>=1;
}
return ans;
}
int inv(int a) {return q_pow(a,mod-2);}
int ntt(int *a,int type) {
for(int i=0;i<limit;++i)
if(i<r[i]) swap(a[i],a[r[i]]);
for(int mid=1;mid<limit;mid<<=1) {
int Wn=q_pow(3,(mod-1)/(mid<<1));
for(int i=0;i<limit;i+=(mid<<1)) {
for(int j=0,w=1;j<mid;j++,w=1LL*w*Wn%mod) {
int x=a[i+j],y=1LL*w*a[i+j+mid]%mod;
a[i+j]=(x+y)%mod;
a[i+j+mid]=(x-y+mod)%mod;
}
}
}
if(type==-1) {
reverse(&a[1],&a[limit]);
int inv=q_pow(limit,mod-2);
for(int i=0;i<limit;++i) a[i]=1LL*a[i]*inv%mod;
}
}
int f(int x) {
if(!x) return 1;
if(x==1) return n+1;
return 1LL*(q_pow(x,n+1)-1)*inv(x-1)%mod;
}
int main() {
scanf("%d",&n);
jc[0]=1;for(int i=1;i<=n;++i) jc[i]=1LL*jc[i-1]*i%mod;
for(int i=0;i<=n;++i) a[i]=1LL*(i&1?(mod-1):1)*inv(jc[i])%mod;
for(int i=0;i<=n;++i) b[i]=1LL*f(i)*inv(jc[i])%mod;
while(limit<n+n) limit<<=1,p++;
for(int i=0;i<limit;++i)
r[i]=(r[i>>1]>>1)|((i&1)<<(p-1));
ntt(a,1),ntt(b,1);
for(int i=0;i<limit;++i) a[i]=1LL*a[i]*b[i]%mod;
ntt(a,-1);
for(int i=0;i<=n;++i)
ans=(ans+1LL*q_pow(2,i)*jc[i]%mod*a[i]%mod)%mod;
printf("%d\n",ans);
return 0;
}
```\]
loj2058 「TJOI / HEOI2016」求和 NTT的更多相关文章
- loj2058 「TJOI / HEOI2016」求和
推柿子 第二类斯特林数的容斥表达 fft卡精度就用ntt吧qwq. #include <iostream> #include <cstdio> using namespace ...
- LOJ #2058「TJOI / HEOI2016」求和
不错的推柿子题 LOJ #2058 题意:求$\sum\limits_{i=0}^n\sum\limits_{j=0}^nS(i,j)·2^j·j!$其中$ S(n,m)$是第二类斯特林数 $ Sol ...
- 「TJOI / HEOI2016」求和 的一个优秀线性做法
我们把\(S(i, j)j!\)看成是把\(i\)个球每次选择一些球(不能为空)扔掉,选\(j\)次后把所有球都扔掉的情况数(顺序有关).因此\(S(i, j)j! = i![x^i](e^x - 1 ...
- loj#2054. 「TJOI / HEOI2016」树
题目链接 loj#2054. 「TJOI / HEOI2016」树 题解 每次标记覆盖整棵字数,子树维护对于标记深度取max dfs序+线段树维护一下 代码 #include<cstdio> ...
- 「TJOI / HEOI2016」字符串
「TJOI / HEOI2016」字符串 题目描述 佳媛姐姐过生日的时候,她的小伙伴从某东上买了一个生日礼物.生日礼物放在一个神奇的箱子中.箱子外边写了一个长为 \(n\) 的字符串 \(s\),和 ...
- AC日记——#2054. 「TJOI / HEOI2016」树
#2054. 「TJOI / HEOI2016」树 思路: 线段树: 代码: #include <cstdio> #include <cstring> #include < ...
- AC日记——#2057. 「TJOI / HEOI2016」游戏 LOJ
#2057. 「TJOI / HEOI2016」游戏 思路: 最大流: 代码: #include <cstdio> #include <cstring> #include &l ...
- loj #2055. 「TJOI / HEOI2016」排序
#2055. 「TJOI / HEOI2016」排序 题目描述 在 2016 年,佳媛姐姐喜欢上了数字序列.因而他经常研究关于序列的一些奇奇怪怪的问题,现在他在研究一个难题,需要你来帮助他. 这个 ...
- loj#2059. 「TJOI / HEOI2016」字符串 sam+线段树合并+倍增
题意:给你一个子串,m次询问,每次给你abcd,问你子串sa-b的所有子串和子串sc-d的最长公共前缀是多长 题解:首先要求两个子串的最长公共前缀就是把反过来插入变成最长公共后缀,两个节点在paren ...
随机推荐
- python修改linux日志(logtamper.py)
原作者原文:https://blog.csdn.net/qq_27446553/article/details/51434451 躲避管理员who查看 python logtamper.py -m - ...
- Linux中的defunct进程(僵尸进程)
一.什么是defunct进程(僵尸进程)?在 Linux 系统中,一个进程结束了,但是他的父进程没有等待(调用wait / waitpid)他,那么他将变成一个僵尸进程.当用ps命令观察进程的执行状态 ...
- Django-xadmin的使用介绍
Django-xadmin的介绍 Django是python的重量级web框架,写得少,做得多,非常适合后端开发,它很大的一个亮点是,自带后台管理模块,但它自带的后台管理有点丑,而Xadmin是基于b ...
- windows环境:dos 通过ftp连接到vsftpd 显示乱码解决方法
转载至:https://blog.csdn.net/nydia_xiangxiang/article/details/48627921?utm_source=blogxgwz8 感谢原作者的分享 FT ...
- 【转载】C#如何往DataTable中新增一个数据列
在C#中的Datatable数据变量的操作过程中,有时候我们需要往现有的DataTable中新增一个自定义数据列,该列在原有的DataTable变量中并不存在,属于用户手工自定义新增的数据列,在往Da ...
- Vue搭建脚手架2
Vue2.0搭建Vue脚手架(vue-cli) 在网上找了很多的搭建脚手架教程,但都不求甚解.终于找到2个比较好的教程,读者可对比阅读1和2,在这里分享给大家,希望对初学者有所帮助.ps:高手请绕道. ...
- element-ui 上传图片或视频时,先回显在上传
<el-upload class="upload-demo" ref="vidos" :action="URL+'/api/post/file' ...
- Kubernetes学习之基础概念
本文章目录 kubernetes特性 kubernetes集群架构与组件 一.kubernetes集群架构 二.集群组件 三.ubernetes集群术语 深入理解Pod对象 一.Pod容器分类 基础容 ...
- HashMap的源码分析与实现 伸缩性角度看hashmap的不足
本文介绍 1.hashmap的概念 2.hashmap的源码分析 3.hashmap的手写实现 4.伸缩性角度看hashmap的不足 一.HashMap的概念 HashMap可以将其拆分为Hash散列 ...
- 【原】python 检查网站访问是否超时,并用钉钉机器人报警
#!/usr/bin/env python import requests import json import logging webhook="上面创建钉钉机器人的webhook地址&q ...