题目

P1349 广义斐波那契数列

解析

把普通的矩阵乘法求斐波那契数列改一改,随便一推就出来了

\[\begin{bmatrix}f_2\\f_1
\end{bmatrix}\begin{bmatrix}
p&q\\
1&0\\
\end{bmatrix}^{n-2}=\begin{bmatrix}f_n\\f_{n-1}
\end{bmatrix}\]

水题

代码

#include <bits/stdc++.h>
#define int long long using namespace std; const int N = 100; int n, m, a1, a2, p, q; struct matrix {
int a[N][N];
matrix() {
memset(a, 0, sizeof a);
} void InitMatrix() {
a[1][1] = p, a[1][2] = q;
a[2][1] = 1;
} matrix operator * (const matrix &oth) const {
matrix ans;
for (int k = 1; k <= 2; ++k)
for (int i = 1; i <= 2; ++i)
for (int j = 1; j <= 2; ++j)
ans.a[i][j] = (ans.a[i][j] + (a[i][k] * oth.a[k][j]) % m) % m;
return ans;
} } init; matrix qpow(matrix a, int b) {
matrix ans = init;
while (b) {
if (b & 1) ans = ans * a;
b >>= 1, a = a * a;
}
return ans;
} template<class T>inline void read(T &x) {
x = 0; int f = 0; char ch = getchar();
for ( ; !isdigit(ch); ch = getchar()) f |= (ch == '-');
for ( ; isdigit(ch); ch = getchar()) x = x * 10 + ch - '0';
x = f ? -x : x;
return;
} signed main() {
read(p), read(q), read(a1), read(a2), read(n), read(m);
if (n <= 2) {
printf("%lld", n == 1 ? a1 : a2);
return 0;
}
init.InitMatrix();
init = qpow(init, n - 3);
printf("%lld\n", (a2 * init.a[1][1] + a1 * init.a[1][2]) % m);
return 0;
}

P1349 广义斐波那契数列(矩阵乘法)的更多相关文章

  1. 洛谷P1962 斐波那契数列 || P1349 广义斐波那契数列[矩阵乘法]

    P1962 斐波那契数列 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数 ...

  2. P1349 广义斐波那契数列(矩阵加速)

    P1349 广义斐波那契数列 题目描述 广义的斐波那契数列是指形如an=pan-1+qan-2的数列.今给定数列的两系数p和q,以及数列的最前两项a1和a2,另给出两个整数n和m,试求数列的第n项an ...

  3. Codevs 1574 广义斐波那契数列(矩阵乘法)

    1574 广义斐波那契数列 时间限制: 1 s 空间限制: 256000 KB 题目等级 : 钻石 Diamond 题目描述 Description 广义的斐波那契数列是指形如an=p*an-1+q* ...

  4. 洛谷P1349 广义斐波那契数列(矩阵快速幂)

    P1349 广义斐波那契数列 https://www.luogu.org/problemnew/show/P1349 题目描述 广义的斐波那契数列是指形如an=p*an-1+q*an-2的数列.今给定 ...

  5. 洛谷——P1349 广义斐波那契数列(矩阵加速)

    P1349 广义斐波那契数列 题目描述 广义的斐波那契数列是指形如$an=p\times a_{n-1}+q\times a_{n-2}$?的数列.今给定数列的两系数$p$和$q$,以及数列的最前两项 ...

  6. 斐波那契数列 矩阵乘法优化DP

    斐波那契数列 矩阵乘法优化DP 求\(f(n) \%1000000007​\),\(n\le 10^{18}​\) 矩阵乘法:\(i\times k\)的矩阵\(A\)乘\(k\times j\)的矩 ...

  7. 洛谷——P1349 广义斐波那契数列

    题目描述 广义的斐波那契数列是指形如an=p*an-1+q*an-2的数列.今给定数列的两系数p和q,以及数列的最前两项a1和a2,另给出两个整数n和m,试求数列的第n项an除以m的余数. 输入输出格 ...

  8. P1349 广义斐波那契数列

    题目描述 广义的斐波那契数列是指形如an=p*an-1+q*an-2的数列.今给定数列的两系数p和q,以及数列的最前两项a1和a2,另给出两个整数n和m,试求数列的第n项an除以m的余数. 输入输出格 ...

  9. Luogu P1349 广义斐波那契数列

    解题思路 既然广义斐波那契,而且数据范围这么大,那么我们使用矩阵快速幂来进行求解.大家都知道斐波那契的初始矩阵如下 $$\begin{bmatrix}1&1\\1&0\end{bmat ...

随机推荐

  1. unity EditorGUILayer绘制报错

    最近在开发一个可视化工具的时候,遇到了一个代码错误,小小的记录一下 具体的报错信息:ArgumentException: Getting control 0's position in a group ...

  2. Spring Cloud Ribbon 源码分析---负载均衡算法

    上一篇分析了Ribbon如何发送出去一个自带负载均衡效果的HTTP请求,本节就重点分析各个算法都是如何实现. 负载均衡整体是从IRule进去的: public interface IRule{ /* ...

  3. 让ie10/11支持非单页面的vue/es6

    为了满足某些客户的要求,最近让前端同学实现了ie 10(windows 7)/11(windows 10)支持多页面的vue/es6,基本参考如下: https://www.cnblogs.com/n ...

  4. clumsy 模拟网络丢包延迟

    https://www.cnblogs.com/bodboy/p/6015530.html clumsy 能在 Windows 平台下人工造成不稳定的网络状况,方便你调试应用程序在极端网络状况下的表现 ...

  5. pom.xml activatedProperties --spring.profiles.active=uat 对应

    <profiles> <profile> <id>dev</id> <properties> <!-- 环境标识,需要与配置文件的名称 ...

  6. WebRTC搭建前端视频聊天室——数据通道篇

    本文翻译自WebRTC data channels 在两个浏览器中,为聊天.游戏.或是文件传输等需求发送信息是十分复杂的.通常情况下,我们需要建立一台服务器来转发数据,当然规模比较大的情况下,会扩展成 ...

  7. python MySQLdb 字典(dict)结构数据插入mysql

    背景: 有时候直接操作数据库字段比较多,一个个写比较麻烦,而且如果字段名跟数据库一致,那生成为字典后,是否能直接使用字典写入数据库呢,这样会方便很多,这里简单介绍一种方法. 实例: 1. 假设数据库表 ...

  8. 没有可用的软件包 xxx,但是它被其它的软件包引用了

    在linux下apt安装软件,弹出这个错. 解决,更新下资源: sudo apt-get update

  9. numtodsinterval 函数用法

    numtodsinterval(<x>,<c>) ,x是一个数字,c是一个字符串,表明x的单位,这个函数把x转为interval day to second数据类型 常用的单位 ...

  10. 在idea中打开maven项目pom.xml未识别

    在idea中打开maven项目pom.xml没有识别出来,导致idea不能自动下载依赖包, 解决办法是选中pom.xml文件,右键-" add as maven project"