async实现协程,异步编程

我们都知道,现在的服务器开发对于IO调度的优先级控制权已经不再依靠系统,都希望采用协程的方式实现高效的并发任务,如js、lua等在异步协程方面都做的很强大。

python在3.4版本也加入了协程的概念,并在3.5确定了基本完善的语法和实现方式。同时3.6也对其进行了如解除了await和yield在同一个函数体限制等相关的优化。

asyncio是python3.4版本引入到标准库,python2x没有加这个库,毕竟python3x才是未来啊,哈哈!python3.5又加入了async/await特性。

在学习asyncio之前,要先搞清楚同步/异步的概念

  • event_loop 事件循环:程序开启一个无限的循环,程序员会把一些函数注册到事件循环上。当满足事件发生的时候,调用相应的协程函数。
  • coroutine 协程:协程对象,指一个使用async关键字定义的函数,它的调用不会立即执行函数,而是会返回一个协程对象。协程对象需要注册到事件循环,由事件循环调用。
  • task 任务:一个协程对象就是一个原生可以挂起的函数,任务则是对协程进一步封装,其中包含任务的各种状态。
  • future: 代表将来执行或没有执行的任务的结果。它和task上没有本质的区别
  • async/await 关键字:python3.5 用于定义协程的关键字,async定义一个协程,await用于挂起阻塞的异步调用接口。

上文我们还提到了 task,它是对 coroutine 对象的进一步封装,它里面相比 coroutine 对象多了运行状态,比如 running、finished 等,我们可以用这些状态来获取协程对象的执行情况。

1、创建协程

首先定义一个协程,在def前加入async声明,就可以定义一个协程函数。

一个协程函数不能直接调用运行,只能把协程加入到事件循环loop中。asyncio.get_event_loop方法可以创建一个事件循环,然后使用run_until_complete将协程注册到事件循环,并启动事件循环。

例如:

import asyncio

async def func(a):
    print('leiting':a)
corouine = func(1)

loop = asyncio.get_event_loop()
loop.run_until_complete(func())

在上面的例子中,当我们将 coroutine 对象传递给 run_until_complete() 方法的时候,实际上它进行了一个操作就是将 coroutine 封装成了 task 对象,我们也可以显式地进行声明, 如下所示 :

import asyncio

async def execute(x):
    print('Number:', x)
    return x

coroutine = execute(1)
print('Coroutine:', coroutine)
print('After calling execute')

loop = asyncio.get_event_loop()

task = loop.create_task(coroutine)
print('Task1:', task)
#当我们将 coroutine 对象传递给 run_until_complete() 方法的时候,实际上它进行了一个操作就是将 coroutine 封装成了 task 对象,我们也可以显式地进行声明
loop.run_until_complete(task)
print('Task:', task)
print('After calling loop')

结果
#Coroutine: <coroutine object execute at 0x0000017A398CB3C8>
#After calling execute
#Task1: <Task pending coro=<execute() running at D:/Python/项目位置/test.py:17>>
#Number: 1
#Task: <Task finished coro=<execute() done, defined at D:/Python/项目位置/test.py:17> result=1>
#After calling loop

这里我们定义了 loop 对象之后,接着调用了它的 create_task() 方法将 coroutine 对象转化为了 task 对象,随后我们打印输出一下,发现它是 pending 状态。接着我们将 task 对象添加到事件循环中得到执行,随后我们再打印输出一下 task 对象,发现它的状态就变成了 finished,同时还可以看到其 result 变成了 1,也就是我们定义的 execute() 方法的返回结果。

另外定义 task 对象还有一种方式,就是直接通过 asyncio 的 ensure_future() 方法,返回结果也是 task 对象,这样的话我们就可以不借助于 loop 来定义,即使我们还没有声明 loop 也可以提前定义好 task 对象,写法如下:

import asyncio

async def execute(x):
    print('Number:', x)
    return x

coroutine = execute(1)
print('Coroutine:', coroutine)
print('After calling execute')

task = asyncio.ensure_future(coroutine)
print('Task1:', task)
loop = asyncio.get_event_loop()
loop.run_until_complete(task)

结果
#Coroutine: <coroutine object execute at 0x0000016A2C34B3C8>
#After calling execute
#Task1: <Task pending coro=<execute() running at D:/Python/项目位置/test.py:17>>
#Number: 1
#Task: <Task finished coro=<execute() done, defined at D:/Python/项目位置test.py:17> result=1>
#After calling loop

发现其效果都是一样的。

绑定回调

(1)调用add_done_callback()方法为某个task绑定一个回调方法。我们将 callback() 方法传递给了封装好的 task 对象,这样当 task 执行完毕之后就可以调用 callback() 方法了,同时 task 对象还会作为参数传递给 callback() 方法,调用 task 对象的 result() 方法就可以获取返回结果了

import asyncio
import requests
async def request():
    url = 'https://www.baidu.com'
    status = requests.get(url)
    status = status.text
    return status
def callback(task):
    print('Status:', task.result())
coroutine = request()
task = asyncio.ensure_future(coroutine)
task.add_done_callback(callback)
print('Task:', task)
loop = asyncio.get_event_loop()
loop.run_until_complete(task)
print('Task:', task)

(2)直接调用task运行完毕之后直接调用result()方法获取结果

import asyncio
import requests
async def request():
    url = 'https://www.baidu.com'
    status = requests.get(url)
    return status
coroutine = request()
task = asyncio.ensure_future(coroutine)
print('Task:', task)
loop = asyncio.get_event_loop()
loop.run_until_complete(task)
print('Task:', task)
print('Task Result:', task.result())

#Task: <Task pending coro=<request() running at D:/Python/项目位置/test.py:53>>
#Task: <Task finished coro=<request() done, defined at D:/Python/项目位置/test.py:53> result=<Response [200]>>
#Task Result: <Response [200]>

3、多任务协程

定义一个task列表,然后使用asyncio的wait()方法即可执行;我们使用一个 for 循环创建了五个 task,组成了一个列表,然后把这个列表首先传递给了 asyncio 的 wait() 方法,然后再将其注册到时间循环中,就可以发起五个任务了。最后我们再将任务的运行结果输出出来

import asyncio
import requests
async def request():
    url = 'https://www.baidu.com'
    status = requests.get(url)
    return status
tasks = [asyncio.ensure_future(request()) for _ in range(5)]
print('Tasks:', tasks)
loop = asyncio.get_event_loop()
loop.run_until_complete(asyncio.wait(tasks))
for task in tasks:
    print('Task Result:', task.result())

Task Result: <Response [200]>
Task Result: <Response [200]>
Task Result: <Response [200]>
Task Result: <Response [200]>
Task Result: <Response [200]>

4、协程实现

(1)使用 await 可以将耗时等待的操作挂起,让出控制权。当协程执行的时候遇到 await,时间循环就会将本协程挂起,转而去执行别的协程,直到其他的协程挂起或执行完毕。

import asyncio
import requests
import time
start = time.time()
async def get(url):
    return requests.get(url)
async def request():
    url = 'https://www.baidu.com'
    print('Waiting for', url)
    response = await get(url)
    print('Get response from', url, 'Result', response.status_code)
tasks = [asyncio.ensure_future(request()) for _ in range(5)]
loop = asyncio.get_event_loop()
loop.run_until_complete(asyncio.wait(tasks))
end = time.time()
print('Cost time:', end - start)

Waiting for https://www.baidu.com
Get response from https://www.baidu.com Result 200
Waiting for https://www.baidu.com
Get response from https://www.baidu.com Result 200
Waiting for https://www.baidu.com
Get response from https://www.baidu.com Result 200
Waiting for https://www.baidu.com
Get response from https://www.baidu.com Result 200
Waiting for https://www.baidu.com
Get response from http

5、使用aiohttp

aiohttp是一个支持异步请求的库,利用它和asyncio配合我们可以非常方便的实现异步请求操作。

在这里我们将请求库由 requests 改成了 aiohttp,通过 aiohttp 的 ClientSession 类的 get() 方法进行请求

import asyncio
import aiohttp
import time
start = time.time()
async def get(url):
    session = aiohttp.ClientSession()
    response = await session.get(url)
    result = await response.text()
    await session.close()
    return result
async def request():
    url = 'http://www.newsmth.net/nForum/#!mainpage'
    print('Waiting for', url)
    result = await get(url)
    print('Get response from', url, 'Result:', result)
tasks = [asyncio.ensure_future(request()) for _ in range(5)]
loop = asyncio.get_event_loop()
loop.run_until_complete(asyncio.wait(tasks))
end = time.time()
print('Cost time:', end - start)

代码里面我们使用了 await,后面跟了 get() 方法,在执行这五个协程的时候,如果遇到了 await,那么就会将当前协程挂起,转而去执行其他的协程,直到其他的协程也挂起或执行完毕,再进行下一个协程的执行。

开始运行时,时间循环会运行第一个 task,针对第一个 task 来说,当执行到第一个 await 跟着的 get() 方法时,它被挂起,但这个 get() 方法第一步的执行是非阻塞的,挂起之后立马被唤醒,所以立即又进入执行,创建了 ClientSession 对象,接着遇到了第二个 await,调用了 session.get() 请求方法,然后就被挂起了,由于请求需要耗时很久,所以一直没有被唤醒,好第一个 task 被挂起了,那接下来该怎么办呢?事件循环会寻找当前未被挂起的协程继续执行,于是就转而执行第二个 task 了,也是一样的流程操作,直到执行了第五个 task 的 session.get() 方法之后,全部的 task 都被挂起了。所有 task 都已经处于挂起状态,那咋办?只好等待了。3 秒之后,几个请求几乎同时都有了响应,然后几个 task 也被唤醒接着执行,输出请求结果,最后耗时,3 秒!

怎么样?这就是异步操作的便捷之处,当遇到阻塞式操作时,任务被挂起,程序接着去执行其他的任务,而不是傻傻地等着,这样可以充分利用 CPU 时间,而不必把时间浪费在等待 IO 上。

爬虫高性能asyncio+ahttpio的更多相关文章

  1. 爬虫高性能 asyncio库 twisted库 tornado库

    一 背景知识 爬虫的本质就是一个socket客户端与服务端的通信过程,如果我们有多个url待爬取,只用一个线程且采用串行的方式执行,那只能等待爬取一个结束后才能继续下一个,效率会非常低. 需要强调的是 ...

  2. 爬虫04 /asyncio、selenium规避检测、动作链、无头浏览器

    爬虫04 /asyncio.selenium规避检测.动作链.无头浏览器 目录 爬虫04 /asyncio.selenium规避检测.动作链.无头浏览器 1. 协程asyncio 2. aiohttp ...

  3. 爬虫高性能相关(协程效率最高,IO密集型)

    一背景常识 爬虫的本质就是一个socket客户端与服务端的通信过程,如果我们有多个url待爬取,采用串行的方式执行,只能等待爬取一个结束后才能继续下一个,效率会非常低. 需要强调的是:串行并不意味着低 ...

  4. asynicio模块以及爬虫应用asynicio模块(高性能爬虫)

    一.背景知识 爬虫的本质就是一个socket客户端与服务端的通信过程,如果我们有多个url待爬取,只用一个线程且采用串行的方式执行,那只能等待爬取一个结束后才能继续下一个,效率会非常低. 需要强调的是 ...

  5. 八、asynicio模块以及爬虫应用asynicio模块(高性能爬虫)

    asynicio模块以及爬虫应用asynicio模块(高性能爬虫) 一.背景知识 爬虫的本质就是一个socket客户端与服务端的通信过程,如果我们有多个url待爬取,只用一个线程且采用串行的方式执行, ...

  6. Python有了asyncio和aiohttp在爬虫这类型IO任务中多线程/多进程还有存在的必要吗?

    最近正在学习Python中的异步编程,看了一些博客后做了一些小测验:对比asyncio+aiohttp的爬虫和asyncio+aiohttp+concurrent.futures(线程池/进程池)在效 ...

  7. python爬虫---单线程+多任务的异步协程,selenium爬虫模块的使用

    python爬虫---单线程+多任务的异步协程,selenium爬虫模块的使用 一丶单线程+多任务的异步协程 特殊函数 # 如果一个函数的定义被async修饰后,则该函数就是一个特殊的函数 async ...

  8. python协程详解,gevent asyncio

    python协程详解,gevent asyncio 新建模板小书匠 #协程的概念 #模块操作协程 # gevent 扩展模块 # asyncio 内置模块 # 基础的语法 1.生成器实现切换 [1] ...

  9. Python 目录指引

    1.0 Python 基础整合 1.1 变量 1.2 数据类型 1.3 基础语法 1.4 文件操作 1.5 函数 1.6 生成器 1.7 迭代器 1.8 装饰器 1.9 字符集 2.0 Python ...

随机推荐

  1. IAR_STM32_CCM内存使用

    在IAR中,硬件环境为STM32F464单片机,额外的CCM不能用DMA访问,但可以作为内部额外扩充RAM使用 修改文件中的内容为: define symbol __ICFEDIT_region_RO ...

  2. java中多重循环和break、continue语句

    一.嵌套循环 循环可以互相嵌套,以实现更加复杂的逻辑,其代码的复杂程度也会提高,对初学者而言这应该是个难点,下面我们通过一些例子说明嵌套循环的使用,读者要自己把这些代码上机练习,并理解程序运行的流程. ...

  3. CMPP服务端源码

    CMPP服务端,带数据库,可以接收第三方CMPP客户端的短信,并存入数据库,结合我的cmpp客户端服务程序,将可以实现接收第三方SP的短信并转发到网关实现发送,并将状态报告.上行短信转发给第三方SP, ...

  4. Django的安全攻击

    目录 Django的安全攻击 XSS XSS(跨站脚本攻击) 危害 原理 防护 csrf(Cross Site Request Forgery) csrf(跨站域请求伪造) 过程 Django 提供的 ...

  5. tomcat重启session不失效问题

    本地写代码每次重启都要重新登录浪费了很多时间,如何重启不用重新登录呢,只要让tomcat在关闭时将session写入文件中,在启动时从文件中读取session即可. 只需在conf/context.x ...

  6. vue-cli项目中使用vw——相比flexible更原生的移动端解决方案

    安装命令行输入: yarn add postcss-px-to-viewport 或 npm i postcss-px-to-viewport -save -dev 配置package.json中,在 ...

  7. js学习之存储

    一.Cookie和Session的区别 1.cookie数据存放在客户的浏览器上,session数据放在服务器上(一般以内存.数据库.文件形式). 2.session会在一定时间内保存在服务器上.当访 ...

  8. JavaScript API 与 DOM

    一.API 1.API 的概念 API(Application Programming Interface,应用程序编程接口)是一些预先定义的函数,目的是提供引用程序与开发人员基于某软件或硬件得以访问 ...

  9. OSPF 虚链路

    通过配置OSPF虚链路连接到骨干区域. 实验拓扑 如图所示连接,地址规划如下: 名称 接口 IP地址 R1 f0/0 192.168.10.1/24 R1 f0/1 192.168.20.1/24 R ...

  10. Spring实战(第4版).pdf - 百度云资源

    http://www.supan.vip/spring%E5%AE%9E%E6%88%98 Spring实战(第4版).pdf 关于本书 Spring框架是以简化Java EE应用程序的开发为目标而创 ...