洛谷2605:基站选址

题意描述:

  • 有\(N\)个村庄在一条直线上,第\(i(i>1)\)个村庄的距离第\(1\)个村庄的距离为\(D_i\)。
  • 需要在这些村庄中建立不超过\(K\)个通讯站,在第\(i\)个村庄建立基站的费用为\(C_i\)。
  • 如果在距离第\(i\)个村庄不超过\(S_i\)的范围内建立了一个通讯站,那么村庄就被基站覆盖。
  • 如果第\(i\)个村庄没有被覆盖,则要向他们补偿,费用为\(W_i\)。
  • 现在的问题是,选择基站的位置,使得总花费最小。
  • 数据范围:
    • \(k\leq N,k\leq 100,N\leq2*10^4,D_i\leq 10^9,C_i\leq 10^4,S_i\leq 10^9, w_i\leq 10^4\)。

输入格式:

  • 第一行包含两个整数\(N,K\),含义如上所述。
  • 第二行包含\(N-1\)个整数,分别表示\(D_2,D_3,...,D_n\)\((\)与第一个村庄的距离\()\),这\(N-1\)个数是递增的。
  • 第三行输入\(N\)个整数,表示\(C_1,C_2,...,C_n\)\((\)在第\(i\)个村庄建基站的费用\()\)。
  • 第四行输入\(N\)个整数,表示\(S_1,S_2,...,S_n\)\((\)第\(i\)个基站覆盖的距离\()\)。
  • 第五行输入\(N\)个整数,表示\(W_1,W_2,...,W_n\)\((\)表示补偿的费用\()\)

输出格式:

  • 输出一个整数表示最小的总费用。

思路:

  • 线段树优化\(dp\)。

  • 先考虑最朴素的\(dp\)如何处理。

  • 设\(f(i,j)\)表示表示前\(i\)个村庄建立了\(j\)个通讯站的最小开销。为了方便转移,让第\(j\)个通讯站强制建立在第\(i\)个位置。

  • 有状态转移方程:\(f(i,j)=min(f(k,j-1)+cost(k,i))+C_i\)。

  • 也可以滚动一下变成\(f(i)=min(f(k)+cost(k,i))+c_i\)。

    • 多设立一个空节点\(n+1\)。
    • 那么最后的答案就是\(ans=min(f(n+1,i))(1\leq i\leq k+1)\)。
  • 其中\(cost(k,i)\)表示从第\(k\)到第\(i\)个村庄选择外其他的都不选,所需要的补偿的费用。

    • 计算\(cost\)的时间复杂度为\(O(n)\)。
    • 计算\(dp\)的时间复杂度为\(O(nk)\),所以总时间复杂度为\(O(n^2k)\)。
  • 这个复杂度显然是无法通过的,对于枚举\(i,j\)而言,无法降低复杂度。我们可以在计算\(cost\)上下功夫。

  • 对于每一个村庄\(i\),都需要在一个范围内建基站,否则就要做出赔偿。假设第\(i\)个基站的区间是\([l_i,r_i]\)。

  • 考虑在不在\(r\)处建立基站,有如下两种可能:

    • \(1:\)不在\(r\)处建立基站,那么对于当前村庄\(i\)来说,上一个基站在\([1,l-1]\)这个区间的话,就要对\(i\)村庄进行赔偿。那么我们就需要在\([1,l-1]\)区间加上村庄\(i\)的赔偿费用。
    • \(2:\)在\(r\)处建立基站,那么就要查询区间最小值了。
  • 为了维护如上两个操作(快速区间修改,求区间最小值),我们可以采用线段树。

  • 所以转移过程中用线段树维护\(min(f(k,j)+cost(k,i))\)即可。

  • 当然还需要开两个数组辅助:

    • \(st(i)\)表示第\(i\)个村庄的左端点\(l_i\)。
    • \(ed(i)\)表示第\(i\)个村庄的右端点\(r_i\)。
  • 当然也会有很多点的\(ed\)都为\(i\),所以用前向星来存一下。

  • 时间复杂度被优化到了\(O(knlogn)\),大约在\(10^7\)左右,可以通过。

代码:

#include<bits/stdc++.h>
#define PII pair<int, int>
using namespace std;
typedef long long ll;
const int maxn = 2e4 + 10;
const ll INF = 1e18 + 10;
int n, k;
int st[maxn], ed[maxn];
ll c[maxn], w[maxn], d[maxn], s[maxn];
ll f[maxn], ans; int head[maxn], nex[maxn<<1], ver[maxn<<1], tot;
void add_edge(int x, int y){
ver[++tot] = y; nex[tot] = head[x]; head[x] = tot;
} struct SegmentTree
{
int l, r, add;
ll dat;
#define lson (p<<1)
#define rson (p<<1|1)
#define l(x) tree[x].l
#define r(x) tree[x].r
#define dat(x) tree[x].dat
#define add(x) tree[x].add
}tree[maxn<<2]; inline void pushup(int p){
dat(p) = min(dat(lson), dat(rson));
} inline void spread(int p)
{
if(add(p))
{
dat(lson) += add(p);
dat(rson) += add(p);
add(lson) += add(p);
add(rson) += add(p);
add(p) = 0;
}
} void build(int p, int l, int r)
{
add(p) = 0;
l(p) = l, r(p) = r;
if(l == r)
{
dat(p) = f[l];
return;
}
int mid = (l + r) >> 1;
build(lson, l, mid);
build(rson, mid+1, r);
pushup(p);
} ll ask(int p, int l, int r)
{
if(l <= l(p) && r(p) <= r) return dat(p);
spread(p);
int mid = (l(p) + r(p)) >> 1;
ll val = INF;
if(l <= mid) val = min(val, ask(lson, l, r));
if(mid < r) val = min(val, ask(rson, l, r));
return val;
} void change(int p, int l, int r, int d)
{
if(l <= l(p) && r(p) <= r)
{
dat(p) += (ll)d;
add(p) += d;
return;
}
spread(p);
int mid = (l(p)+r(p)) >> 1;
if(l <= mid) change(lson, l, r, d);
if(mid < r) change(rson, l, r, d);
pushup(p);
} int main()
{
scanf("%d%d", &n, &k);
for(int i = 2; i <= n; i++) scanf("%lld", &d[i]);
for(int i = 1; i <= n; i++) scanf("%lld", &c[i]);
for(int i = 1; i <= n; i++) scanf("%lld", &s[i]);
for(int i = 1; i <= n; i++) scanf("%lld", &w[i]); d[++n] = INF, w[n] = INF; k++;
//建立虚节点 //预处理出区间
for(int i = 1; i <= n; i++)
{
st[i] = lower_bound(d+1, d+1+n, d[i]-s[i])-d;
ed[i] = lower_bound(d+1, d+1+n, d[i]+s[i])-d;
if(d[ed[i]] > d[i] + s[i]) ed[i] -= 1;
add_edge(ed[i], i);
} //开始dp
ans = INF; int t = 0;
for(int i = 1; i <= k; i++)
{
if(i == 1) //预处理出只有一个基站的答案
{
t = 0;
for(int j = 1; j <= n; j++)
{
f[j] = t + c[j];
//寻找恰好被j覆盖 但不被j+1覆盖掉的点
for(int p = head[j]; p; p = nex[p])
{
int v = ver[p];
t += w[v];
}
}
ans = f[n]; continue;
}
//f(i)每次都在变 所以每次都更新一下线段树
build(1, 1, n);
for(int j = 1; j <= n; j++)
{
if(j == 1) f[j] = c[j];
else f[j] = ask(1, 1, j-1) + c[j]; //建立基站
//不建立基站
//将赔偿金累加到线段树中去
for(int p = head[j]; p; p = nex[p])
{
int v = ver[p];
if(st[v] - 1 > 0)
change(1, 1, st[v]-1, w[v]);
}
}
//更新答案
ans = min(ans, f[n]);
}
printf("%lld\n", ans);
return 0;
}

luogu_2605: 基站选址的更多相关文章

  1. BZOJ 1835: [ZJOI2010]base 基站选址 [序列DP 线段树]

    1835: [ZJOI2010]base 基站选址 题目描述 有N个村庄坐落在一条直线上,第i(i>1)个村庄距离第1个村庄的距离为Di.需要在这些村庄中建立不超过K个通讯基站,在第i个村庄建立 ...

  2. 【Bzoj 1835 基站选址】

    基站选址的区间里隐藏着DP优化的机密…… 分析:       不论是做过乘积最大还是石子合并,或者是其他的入门级别的区间DP题目的人呐,大米并认为读题后就能够轻松得出一个简洁明了的Dp转移方程.    ...

  3. 【题解】Luogu P2605 [ZJOI2010]基站选址

    原题传送门:P2604 [ZJOI2010]基站选址 看一眼题目,变知道这题一定是dp 设f[i][j]表示在第i个村庄修建第j个基站且不考虑i+1~n个村庄的最小费用 可以得出f[i][j] = M ...

  4. 【BZOJ1835】基站选址(线段树)

    [BZOJ1835]基站选址(线段树) 题面 BZOJ 题解 考虑一个比较暴力的\(dp\) 设\(f[i][j]\)表示建了\(i\)个基站,最后一个的位置是\(j\)的最小代价 考虑如何转移\(f ...

  5. 基站选址(base.c/cpp/pas)

    基站选址(base.c/cpp/pas) 题目描述  有N个村庄坐落在一条直线上,第i(i>1)个村庄距离第1个村庄的距离为Di.需要在这些村庄中建立不超过K个通讯基站,在第i个村庄建立基站的费 ...

  6. 【BZOJ1835】[ZJOI2010]base 基站选址 线段树+DP

    [BZOJ1835][ZJOI2010]base 基站选址 Description 有N个村庄坐落在一条直线上,第i(i>1)个村庄距离第1个村庄的距离为Di.需要在这些村庄中建立不超过K个通讯 ...

  7. 【LG2605】[ZJOI2010]基站选址

    [LG2605][ZJOI2010]基站选址 题面 洛谷 题解 先考虑一下暴力怎么写,设\(f_{i,j}\)表示当前\(dp\)到\(i\),且强制选\(i\),目前共放置\(j\)个的方案数. 那 ...

  8. 题解 [ZJOI2010]基站选址

    题解 [ZJOI2010]基站选址 题面 解析 首先考虑一个暴力的DP, 设\(f[i][k]\)表示第\(k\)个基站设在第\(i\)个村庄,且不考虑后面的村庄的最小费用. 那么有\(f[i][k] ...

  9. luogu P2605 [ZJOI2010]基站选址 线段树优化dp

    LINK:基站选址 md气死我了l达成1结果一直调 显然一个点只建立一个基站 然后可以从左到右进行dp. \(f_{i,j}\)表示强制在i处建立第j个基站的最小值. 暴力枚举转移 复杂度\(n\cd ...

随机推荐

  1. 『金字塔 区间dp』

    金字塔 Description 虽然探索金字塔是极其老套的剧情,但是这一队 探险家还是到了某金字塔脚下.经过多年的研究,科 学家对这座金字塔的内部结构已经有所了解.首先, 金字塔由若干房间组成,房间之 ...

  2. MQTT v5.0------SUBSCRIBE 报文

    SUBSCRIBE 报文 固定报头: 剩余长度字段 表示可变报头的长度加上有效载荷的长度,被编码为变长字节整数. 可变报头 SUBSCRIBE报文可变报头按顺序包含以下字段:报文标识符(Packet ...

  3. Centos7通过yum安装jdk8

    1.Centos7通过yum安装jdk8 2.Centos7通过yum安装jdk8

  4. Java 最常见 200+ 面试题全解析:面试必备

    本文分为十九个模块,分别是: Java 基础.容器.多线程.反射.对象拷贝.Java Web .异常.网络.设计模式.Spring/Spring MVC.Spring Boot/Spring Clou ...

  5. 【转载】如何查看本机电脑的公网IP

    在实际使用电脑的过程中,很多时候我们需要知道本地电脑的当前公网IP地址,我们都知道个人电脑的公网IP是不固定的,可能每天的对外公网IP都不一样,如果要查看当前本机电脑的对外公网IP,方法也很简单,直接 ...

  6. Vue – 基础学习(3):$forceUpdate()和$nextTick()的区别

    Vue – 基础学习(3):$forceUpdate()和$nextTick()的区别

  7. AI面试-算法结构基础

    其实目前国内几乎只要是技术岗,面试中都100%会问算法和数据结构. 这两者能快速体现候选人真实的水平,比如代码量,代码的质量,性能,思维是否有逻辑,是否灵活. 算法结果概述 1.前言 1.应用范围:机 ...

  8. RPC相关知识

    为什么要进行系统拆分,为什么要用dubbo RPC的由来,基本架构,实现原理,整个调用过程经历了哪几步 Java动态代理及 RPC框架介绍 一篇文章了解RPC框架原理 dubbo详解及demo实例 d ...

  9. vim巧妙用法

    1. 块复制 按ctrl+v键,编辑框最下方将出现"可视 块"字样 使用方向键移动光标,选择矩形区域内的文字 y 键复制文本: d 键剪切文本:p 键粘贴文本 按shift+v键, ...

  10. 在线java堆栈分析工具

    1:工具地址  https://gceasy.io/ft-dashboard-web.jsp 2:在线分析结果