【CF438D】The Child and Sequence(线段树)
大致题意: 给你一个序列,让你支持区间求和、区间取模、单点修改操作。
区间取模
区间求和和单点修改显然都很好维护吧,难的主要是区间取模。
取模标记无法叠加,因此似乎只能暴力搞?
实际上,我么先考虑一个结论:
一个数\(x\)向一个不大于它的数\(p\)取模,所得结果必然小于\(\frac x2\)。
证明:
当\(p\le\frac x2\)时,由于\(x\%p<p\),所以\(x\%p<\frac x2\)。
当\(p>\frac x2\)时,由于\(p\le x\),所以\(x\%p=x-p<x-\frac x2<\frac x2\)。
所以,这个数减小的速度是非常快的。
同时我们又有一个显然的性质:
一个数\(x\)向一个大于它的数\(p\)取模,所得结果必然为\(x\)本身。
因此,我们可以考虑在原本暴力基础上加一个剪枝:
若取模区间内最大值小于当前模数,就可以直接\(return\)掉。
这样一来,就做完了?
代码
#include<bits/stdc++.h>
#define Tp template<typename Ty>
#define Ts template<typename Ty,typename... Ar>
#define Reg register
#define RI Reg int
#define Con const
#define CI Con int&
#define I inline
#define W while
#define N 100000
#define LL long long
using namespace std;
int n,a[N+5];
class FastIO
{
private:
#define FS 100000
#define tc() (A==B&&(B=(A=FI)+fread(FI,1,FS,stdin),A==B)?EOF:*A++)
#define pc(c) (C==E&&(clear(),0),*C++=c)
#define tn (x<<3)+(x<<1)
#define D isdigit(c=tc())
int T;char c,*A,*B,*C,*E,FI[FS],FO[FS],S[FS];
public:
I FastIO() {A=B=FI,C=FO,E=FO+FS;}
Tp I void read(Ty& x) {x=0;W(!D);W(x=tn+(c&15),D);}
Ts I void read(Ty& x,Ar&... y) {read(x),read(y...);}
Tp I void write(Ty x) {W(S[++T]=x%10+48,x/=10);W(T) pc(S[T--]);}
Tp I void writeln(Con Ty& x) {write(x),pc('\n');}
I void clear() {fwrite(FO,1,C-FO,stdout),C=FO;}
}F;
class SegmentTree//线段树
{
private:
#define P CI l=1,CI r=n,CI rt=1
#define L l,mid,rt<<1
#define R mid+1,r,rt<<1|1
#define PU(x) (Mx[x]=max(Mx[x<<1],Mx[x<<1|1]),S[x]=S[x<<1]+S[x<<1|1])
LL Mx[N<<2],S[N<<2];
public:
I void Build(P)//建树
{
if(l==r) return (void)(Mx[rt]=S[rt]=a[l]);RI mid=l+r>>1;
Build(L),Build(R),PU(rt);
}
I void Mod(CI tl,CI tr,CI X,P)//区间取模
{
if(Mx[rt]<X) return;if(l==r) return (void)(Mx[rt]%=X,S[rt]%=X);RI mid=l+r>>1;
tl<=mid&&(Mod(tl,tr,X,L),0),tr>mid&&(Mod(tl,tr,X,R),0),PU(rt);
}
I void Upt(CI x,CI y,P)//单点修改
{
if(l==r) return (void)(Mx[rt]=S[rt]=y);RI mid=l+r>>1;
x<=mid?Upt(x,y,L):Upt(x,y,R),PU(rt);
}
I LL Query(CI tl,CI tr,P)//区间求和
{
if(tl<=l&&r<=tr) return S[rt];RI mid=l+r>>1;
return (tl<=mid?Query(tl,tr,L):0)+(tr>mid?Query(tl,tr,R):0);
}
}S;
int main()
{
RI Qt,i,op,x,y,z;for(F.read(n,Qt),i=1;i<=n;++i) F.read(a[i]);
S.Build();W(Qt--) switch(F.read(op,x,y),op)
{
case 1:F.writeln(S.Query(x,y));break;
case 2:F.read(z),S.Mod(x,y,z);break;
case 3:S.Upt(x,y);break;
}return F.clear(),0;
}
【CF438D】The Child and Sequence(线段树)的更多相关文章
- CF438D The Child and Sequence 线段树
给定数列,区间查询和,区间取模,单点修改. n,m小于10^5 ...当区间最值小于模数时,就直接返回就好啦~ #include<cstdio> #include<iostream& ...
- Codeforces Round #250 (Div. 1) D. The Child and Sequence 线段树 区间取摸
D. The Child and Sequence Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest ...
- Codeforces 438D The Child and Sequence - 线段树
At the children's day, the child came to Picks's house, and messed his house up. Picks was angry at ...
- Codeforces Round #250 (Div. 1) D. The Child and Sequence 线段树 区间求和+点修改+区间取模
D. The Child and Sequence At the children's day, the child came to Picks's house, and messed his h ...
- cf250D. The Child and Sequence(线段树 均摊复杂度)
题意 题目链接 单点修改,区间mod,区间和 Sol 如果x > mod ,那么 x % mod < x / 2 证明: 即得易见平凡, 仿照上例显然, 留作习题答案略, 读者自证不难. ...
- CF(438D) The Child and Sequence(线段树)
题意:对数列有三种操作: Print operation l, r. Picks should write down the value of . Modulo operation l, r, x. ...
- CodeForces 438D The Child and Sequence (线段树 暴力)
传送门 题目大意: 给你一个序列,要求在序列上维护三个操作: 1)区间求和 2)区间取模 3)单点修改 这里的操作二很讨厌,取模必须模到叶子节点上,否则跑出来肯定是错的.没有操作二就是线段树水题了. ...
- Codeforces Round #250 (Div. 1) D. The Child and Sequence (线段树)
题目链接:http://codeforces.com/problemset/problem/438/D 给你n个数,m个操作,1操作是查询l到r之间的和,2操作是将l到r之间大于等于x的数xor于x, ...
- 2016暑假多校联合---Rikka with Sequence (线段树)
2016暑假多校联合---Rikka with Sequence (线段树) Problem Description As we know, Rikka is poor at math. Yuta i ...
- [CF438D]The Child and Sequence【线段树】
题目大意 区间取模,区间求和,单点修改. 分析 其实算是一道蛮简单的水题. 首先线段树非常好解决后两个操作,重点在于如何解决区间取模的操作. 一开始想到的是暴力单点修改,但是复杂度就飙到了\(mnlo ...
随机推荐
- 海边拾贝-E-第三方专栏文章
收录一些优秀的专栏文章,或者解决某类知识点的文章: Linux高性能服务器编程:https://blog.csdn.net/gatieme/column/info/high-per-server ht ...
- Comment file
/// This is the head comment of a file. /*********************************************************** ...
- Shell基本运算符之字符串运算符
Shell基本运算符 1.字符串运算符 常用的字符串运算符 运算符 说明 例子 = 检测两字符串是否相等,相等返回true [ $a = $b ] != 检测两个字符串是否部相等,不相等返回true ...
- 从零到一手写基于Redis的分布式锁框架
1.分布式锁缘由 学习编程初期,我们做的诸如教务系统.成绩管理系统大多是单机架构,单机架构在处理并发的问题上一般是依赖于JDK内置的并发编程类库,如synchronize关键字.Lock类等.随着业务 ...
- appstore-react v2.0—redux-actions和redux-saga的应用
开发文档 https://redux-saga.js.org/ https://redux-saga-in-chinese.js.org/ https://redux-actions.js.org/ ...
- 爬虫常用正则、re.findall 使用
爬虫常用正则 爬虫经常用到的一些正则,这可以帮助我们更好地处理字符. 正则符 单字符 . : 除换行以外所有字符 [] :[aoe] [a-w] 匹配集合中任意一个字符 \d :数字 [0-9] \D ...
- 【UOJ#82】【UR #7】水题生成器(贪心)
[UOJ#82][UR #7]水题生成器(贪心) 题面 UOJ 题解 把\(n!\)的所有约数搜出来,这个个数不会很多. 然后从大往小能选则选就好了. #include<iostream> ...
- mysql 各版本对比
具体请看:mysql 各版本差异性对比
- mask-rcnn代码解读(四):rpn_feature_maps数据的处理
此处模拟 rpn_feature_maps数据的处理,最终得到rpn_class_logits, rpn_class, rpn_bbox. 代码如下: import numpy as np'''层与层 ...
- Asp.Net MVC强类型页面获取值几种方式
方式一 (V:视图) @{ Layout = null; } <!DOCTYPE html> <html> <head> <meta name="v ...