Luogu P1073 最优贸易【最短路/建反图】 By cellur925
这么经典的题目,还是看了lyd的题解....唉难过。
一句话题意:在一张点有全都的图上找一条从1到n的路径,存在两个点p,q(p<q),使val[q]-val[p]最大。
给出的图是既有双向又有单向的混合图,考虑像普通的方法一样建图。除此之外,再在一个新邻接表中建原图的反图(边方向相反)。
为什么要这样做?
考虑分别自起点到终点和自终点到起点遍历,计算出f[]和d[],其中f[i]表示从1到i的路径中经过的最小的点权,d[i]表示从n到i的路径中经过的最大点权。(想一想,为什么?)
于是我们就可以枚举断点X,使d[x]-f[x]最大。保证了1能走到n,即路径的连贯(联通)性。
code
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
#define maxn 100090
#define maxm 500090 using namespace std; int n,m,totp,totn,ans;
int headp[maxn],headn[maxn],val[maxn],f[maxn],d[maxn],vis[maxn];
struct node{
int to,next;
};
node edge_posi[maxm*],edge_nega[maxm*]; void add_posi(int x,int y)
{
edge_posi[++totp].to=y;
edge_posi[totp].next=headp[x];
headp[x]=totp;
} void add_nega(int x,int y)
{
edge_nega[++totn].to=y;
edge_nega[totn].next=headn[x];
headn[x]=totn;
} void spfa_posi()
{
queue<int>q;
memset(d,0x3f,sizeof(d));
q.push();d[]=val[];vis[]=;
while(!q.empty())
{
int x=q.front();
q.pop();vis[x]=;
for(int i=headp[x];i;i=edge_posi[i].next)
{
int y=edge_posi[i].to;
if(min(d[x],val[y])<d[y])
{
d[y]=min(d[x],val[y]);
if(!vis[y]) q.push(y),vis[y]=;
}
}
}
} void spfa_nega()
{
queue<int>q;
memset(vis,,sizeof(vis));
memset(f,,sizeof(f));
q.push(n);d[n]=val[n];vis[n]=;
while(!q.empty())
{
int x=q.front();
q.pop();vis[x]=;
for(int i=headn[x];i;i=edge_nega[i].next)
{
int y=edge_nega[i].to;
if(max(f[x],val[y])>f[y])
{
f[y]=max(f[x],val[y]);
if(!vis[y]) q.push(y),vis[y]=;
}
}
}
} int main()
{
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++) scanf("%d",&val[i]);
for(int i=;i<=m;i++)
{
int x=,y=,opt=;
scanf("%d%d%d",&x,&y,&opt);
if(opt==)
{
add_posi(x,y);
add_nega(y,x);
}
else if(opt==)
{
add_posi(x,y);add_posi(y,x);
add_nega(y,x);add_nega(x,y);
}
}
spfa_posi();
spfa_nega();
for(int i=;i<=n;i++)
ans=max(ans,f[i]-d[i]);
printf("%d",ans);
return ;
}
建反图的思想妙啊!
Luogu P1073 最优贸易【最短路/建反图】 By cellur925的更多相关文章
- Luogu P1073 最优贸易(最短路)
P1073 最优贸易 题意 题目描述 \(C\)国有\(n\)个大城市和\(m\)条道路,每条道路连接这\(n\)个城市中的某两个城市.任意两个城市之间最多只有一条道路直接相连.这\(m\)条道路中有 ...
- 洛谷 P1073 最优贸易 最短路+SPFA算法
目录 题面 题目链接 题目描述 输入输出格式 输入格式 输出格式 输入输出样例 输入样例 输出样例 说明 思路 AC代码 题面 题目链接 P1073 最优贸易 题目描述 C国有 $ n $ 个大城市和 ...
- Luogu P1073 最优贸易
题目描述 C 国有 n 个大城市和 m 条道路,每条道路连接这 n 个城市中的某两个城市.任意两个城市之间最多只有一条道路直接相连.这 m 条道路中有一部分为单向通行的道路,一部分为双向通行的道路,双 ...
- LuoguP1342请柬 【最短路/建反图】By cellur925
题目传送门 开始就想直接正向跑一遍Dij把到各点的最短路加起来即可,后来发现与样例少了些,于是再读题发现需要也求出学生们回来的最短路. 但是注意到本题是有向图,如果是无向图就好说. 那么我们怎么解决? ...
- 【luogu P1073 最优贸易】 题解
题目链接:https://www.luogu.org/problemnew/show/P1073 对于状态量相互影响的题目,分层图是个不错的想法. 考虑在题目中分为: 不交易: 直接从1到n出去,为0 ...
- [NOIp2009] luogu P1073 最优贸易
md 我发现跟你们聊天贼没意思. 题目描述 我觉得描述挺好,不改了吧. Solution 容易发现这是道 dfs + DP 的乱搞题. 设 f[x]f[x]f[x] 表示到 xxx 这个点的最优答案. ...
- 洛谷 P1073 最优贸易 & [NOIP2009提高组](反向最短路)
传送门 解题思路 很长的题,实际上在一个有向图(点有点权)中求一个从起点1到终点n的路径,使得这条路径上点权最大的点与点权最小的点的差值最大(要求必须从点权较小的点能够走到点权较大的点). ——最短路 ...
- P1073 最优贸易 建立分层图 + spfa
P1073 最优贸易:https://www.luogu.org/problemnew/show/P1073 题意: 有n个城市,每个城市对A商品有不同的定价,问从1号城市走到n号城市可以最多赚多少差 ...
- 洛谷 P1073 最优贸易 解题报告
P1073 最优贸易 题目描述 \(C\)国有\(n\)个大城市和\(m\)条道路,每条道路连接这\(n\)个城市中的某两个城市.任意两个城市之间最多只有一条道路直接相连.这\(m\)条道路中有一部分 ...
随机推荐
- 2018 11.2 PION模拟赛
期望:100 + 50 + 30 = 180 实际:0 + 50 + 30 =80 期望:100 实际:0 数值有负数,边界应该设为-0x7f 此处 gg /* 期望的分:50+ */ ...
- Excel中INDEX函数的使用
1 函数INDEX( )有两种形式: 数组形式——INDEX(array,row_num,column_num)和 引用形式——INDEX(reference,row_num,column_num,a ...
- Office EXCEL 2010如何启用宏编辑器,打开VB编辑器
文件-选项-主选项卡,勾选开发工具 然后在开发工具中找到Visual Basic编辑器,打开代码
- :>/dev/null 2>&1 的作用
shell中可能经常能看到:>/dev/null 2>&1 命令的结果可以通过%>的形式来定义输出 /dev/null 代表空设备文件 > 代表重定向到哪里,例如:ec ...
- 减治算法之寻找第K小元素问题
一.问题描写叙述 给定一个整数数列,寻找其按递增排序后的第k个位置上的元素. 二.问题分析 借助类似快排思想实现pation函数.再利用递归思想寻找k位置. 三.算法代码 public static ...
- [IT学习]Python如何处理异常特殊字符
欢迎访问www.cnblogs.com/viphhs A byte of Python<输入与输出>一节中有一个处理回文的小例子(io_input.py).作者留了个思考题. 如何将标点去 ...
- Django框架之ORM
1,字段和字段的参数 1.1>ORM的概念:对象映射模型(Objects Relational Model)是一种为了解决面向对象和关系型数据库存在的互不匹配的现象和技术,简单的说,ORM是通过 ...
- 配置mahout
构建Mahout要求系统事先安装 1)JDK 1.6 或更高版本 2)Maven 2.0.9 或 2.0.10 Mahout是Hadoop的一种高级应用.运行Mahout需要提前安装好Hadoop.H ...
- 编程题:1. var person = '{name:"Lily",sex:"famale",age:24,country:"US"}';将person转换成JSON对象并便利每个属性值。
/// <summary> /// Json工具类 /// </summary> public class JsonUtility { private static JsonU ...
- mybatis_2
<?xml version="1.0" encoding="UTF-8" ?> <!DOCTYPE configuration PUBLIC ...