图论之最短路算法之SPFA算法
SPFA(Shortest Path Faster Algorithm)算法,是一种求最短路的算法。
SPFA的思路及写法和BFS有相同的地方,我就举一道例题(洛谷——P3371 【模板】单源最短路径(弱化版)来做讲解吧!
如题:
首先,我们先来定义一波变量吧:
struct node{
int v,w;
node (){ }
node (int _v,int _w){
v=_v;
w=_w;
}//构造函数
};
queue<int>qu;//必备队列
const int inf=0x3f3f3f3f;//最大值
vector<node> g[10010];//动态数组存点集
int inq[10010],dst[10010];//标记数组以及确认的最短路经
int n,m;
然后再来一个存图函数
void add(int u,int v,int w){
g[u].push_back(node(v,w));
}
好了,基本的变量函数已经准备好了,现在就开始我们的SPFA。
但需要传什么参数进去呢?那就简洁点,就只要一个s(松弛的点)
void spfa(){
}
首先我们来给dst赋一个最大值,因为求最短路嘛,当然要赋一个最大值嘛。
memset(dst,inf,sizeof dst);
然后就标记+dst还原成0+放进队列
int u=s;
dst[u]=0;
inq[u]=1;
qu.push(u);
下面就开始一波日常的操作:
while (!qu.empty()){
u=qu.front();
qu.pop();//弹出去,不然就出不去了(无限循环)
inq[u]=0;//取消标记,万一会重复走呢?
for (int i=0;i<g[u].size();i++){
int v=g[u][i].v;
int w=g[u][i].w;//取出来,简洁
if (dst[v]>dst[u]+w){
dst[v]=dst[u]+w;//如果松弛了更小,那就松弛吧
if (!inq[v]){
qu.push(v);
inq[v]=1;//如果没走过,那就放进qu在标记一下
}
}
}
}
main函数里就不用讲了嘛:
int main(){
int s;
cin>>n>>m>>s;
while (m--){
int u,v,w;
cin>>u>>v>>w;
add(u,v,w);
}
spfa(s);
for (int i=1;i<=n;i++){
if(dst[i]==0x3f3f3f3f){
cout<<2147483647<<" ";
}else{
cout<<dst[i]<<" ";
}
}
return 0;
}
最后,完整的代码为:
#include <bits/stdc++.h>
using namespace std;
struct node{
int v,w;
node (){ }
node (int _v,int _w){
v=_v;
w=_w;
}
};
queue<int>qu;
const int inf=0x3f3f3f3f;
vector<node> g[10010];
int inq[10010],dst[10010];
int n,m;
void add(int u,int v,int w){
g[u].push_back(node(v,w));
}
void spfa(int s){
memset(dst,inf,sizeof dst);
int u=s;
dst[u]=0;
inq[u]=1;
qu.push(u);
while (!qu.empty()){
u=qu.front();
qu.pop();
inq[u]=0;
for (int i=0;i<g[u].size();i++){
int v=g[u][i].v;
int w=g[u][i].w;
if (dst[v]>dst[u]+w){
dst[v]=dst[u]+w;
if (!inq[v]){
qu.push(v);
inq[v]=1;
}
}
}
}
}
int main(){
int s;
cin>>n>>m>>s;
while (m--){
int u,v,w;
cin>>u>>v>>w;
add(u,v,w);
}
spfa(s);
for (int i=1;i<=n;i++){
if(dst[i]==0x3f3f3f3f){
cout<<2147483647<<" ";
}else{
cout<<dst[i]<<" ";
}
}
return 0;
}
完美结束
图论之最短路算法之SPFA算法的更多相关文章
- Bellman-ford算法、SPFA算法求解最短路模板
Bellman-ford 算法适用于含有负权边的最短路求解,复杂度是O( VE ),其原理是依次对每条边进行松弛操作,重复这个操作E-1次后则一定得到最短路,如果还能继续松弛,则有负环.这是因为最长的 ...
- Bellman-Ford算法与SPFA算法详解
PS:如果您只需要Bellman-Ford/SPFA/判负环模板,请到相应的模板部分 上一篇中简单讲解了用于多源最短路的Floyd算法.本篇要介绍的则是用与单源最短路的Bellman-Ford算法和它 ...
- 数据结构与算法--最短路径之Bellman算法、SPFA算法
数据结构与算法--最短路径之Bellman算法.SPFA算法 除了Floyd算法,另外一个使用广泛且可以处理负权边的是Bellman-Ford算法. Bellman-Ford算法 假设某个图有V个顶点 ...
- 最短路径——Bellman-Ford算法以及SPFA算法
说完dijkstra算法,有提到过朴素dij算法无法处理负权边的情况,这里就需要用到Bellman-Ford算法,抛弃贪心的想法,牺牲时间的基础上,换取负权有向图的处理正确. 单源最短路径 Bellm ...
- 最短路径算法之四——SPFA算法
SPAF算法 求单源最短路的SPFA算法的全称是:Shortest Path Faster Algorithm,该算法是西南交通大学段凡丁于1994年发表的. 它可以在O(kE)的时间复杂度内求出源点 ...
- 最短路径算法 4.SPFA算法(1)
今天所说的就是常用的解决最短路径问题最后一个算法,这个算法同样是求连通图中单源点到其他结点的最短路径,功能和Bellman-Ford算法大致相同,可以求有负权的边的图,但不能出现负回路.但是SPFA算 ...
- 最短路径问题---Floyed(弗洛伊德算法),dijkstra算法,SPFA算法
在NOIP比赛中,如果出图论题最短路径应该是个常考点. 求解最短路径常用的算法有:Floyed算法(O(n^3)的暴力算法,在比赛中大概能过三十分) dijkstra算法 (堆优化之后是O(MlogE ...
- 图论之最短路径(3)队列优化的Bellman-Ford算法(SPFA算法)
在Bellman-Ford算法中 我们可以看到大量的优化空间:如果一个点的最短路径已经确定了,那么它就不会再改变,因此不需要再处理.换句话说:我们每次只对最短路径改变了的顶点的所有出边进行操作 使用一 ...
- 最短路和次短路的条数(dijstra算法或spfa算法)POJ3463
http://poj.org/problem?id=3463 Sightseeing Time Limit: 2000MS Memory Limit: 65536K Total Submissio ...
随机推荐
- memchached你知道和不知道的事
- LeetCode_3Sum
一.题目 3Sum Total Accepted: 45112 Total Submissions: 267165My Submissions Given an array S of n intege ...
- javascript Array method总结
0.创建 Javascript创建数组的基本方式有两种.第一种是使用Array构造函数. var colors = new Array(); var colors = new Array(20); v ...
- postgres SQL编译过程
PG启动首先完成主进程和后台进程的启动,启动时完成数据库文件的打开,共享内存的建立等.接着,所有SQL都会启动1个单独的进程处理SQL的执行过程. 新的进程首先是进行自身的初始化,最主要的是初始化内存 ...
- 通视频URL截取第一帧图片
为了方便直接给UIImage加个类别,以后什么时候使用可以直接调用. #import <UIKit/UIKit.h> @interface UIImage (Video) /** 通过视频 ...
- OpenCV2.3.1在CentOS6.5下的安装
安装的linux版本号是centos6.5.选择的是opencv2.3.1.不是非常新的版本号. 由于在安装opencv2.4.9的时候.make的过程中出现了问题. 一:安装依赖包 依赖包用yum安 ...
- Lily HBase Indexer同步HBase二级索引到Solr丢失数据的问题分析
一.问题描述二.分析步骤2.1 查看日志2.2 修改Solr的硬提交2.3 寻求StackOverFlow帮助2.4 修改了read-row="never"后,丢失部分字段2.5 ...
- 小程序 swiper banner 图片 居中
var imgUrlApp = getApp().globalData.imgUrlApp; Page({ /** * 页面的初始数据 */ data: { indicatorDots: true, ...
- jQuery整理笔记九----功能性表格开发
版权声明:本文为博主原创文章.未经博主同意不得转载. https://blog.csdn.net/hai_cheng001/article/details/27536965 演示样例中用到的一些图片. ...
- iOS 获取WIFI SSID及MAC地址
NSString *ssid = @"Not Found"; NSString *macIp = @"Not Found"; CFArrayRef myArra ...