Problem Description

XOR is a kind of bit operator, we define that as follow: for two binary base number A and B, let C=A XOR B, then for each bit of C, we can get its value by check the digit of corresponding position in A and B. And for each digit, 1 XOR 1 = 0, 1 XOR 0 = 1, 0 XOR 1 = 1, 0 XOR 0 = 0. And we simply write this operator as ^, like 3 ^ 1 = 2,4 ^ 3 = 7. XOR is an amazing operator and this is a question about XOR. We can choose several numbers and do XOR operatorion to them one by one, then we get another number. For example, if we choose 2,3 and 4, we can get 2^3^4=5. Now, you are given N numbers, and you can choose some of them(even a single number) to do XOR on them, and you can get many different numbers. Now I want you tell me which number is the K-th smallest number among them.

Input

First line of the input is a single integer T(T<=30), indicates there are T test cases.
For each test case, the first
line is an integer N(1<=N<=10000), the number of numbers below. The second
line contains N integers (each number is between 1 and 10^18). The third line is
a number Q(1<=Q<=10000), the number of queries. The fourth line contains Q
numbers(each number is between 1 and 10^18) K1,K2,......KQ.

Output

For each test case,first output Case #C: in a single
line,C means the number of the test case which is from 1 to T. Then for each
query, you should output a single line contains the Ki-th smallest number in
them, if there are less than Ki different numbers, output -1.

Sample Input

2
2
1 2
4
1 2 3 4
3
1 2 3
5
1 2 3 4 5

Sample Output

Case #1:
1
2
3
-1
Case #2:
0
1
2
3
-1

Hint

If you choose a single number, the result you get is the number you choose.
Using long long instead of int because of the result may exceed 2^31-1.

Author
elfness

Source

题目大意:给出$n$个数,问两两异或后第$k$小的数是多少

看了很多篇博客,发现都是在围绕着高斯消元解xor方程组来的。

然后我惊讶的发现,原来高斯消元解xor解方程组其实就是求出线性基然后再消元

通过消元保证线性基内有元素的每一列只有一个$1$

然后把$k$二进制分解,如果第$i$是$1$就异或上第$i$个有解的线性基

同时要特判$0$的情况,若线性基的大小与元素的大小相同则不能异或为$0$(线性无关),否则可以异或为零,这时我们只要求出第$k-1$小就可以了

这里把$k$二进制分解后的$0/1$实际对应了线性基中元素选/不选,可以证明这样一定是对的

#include<cstdio>
#include<cstring>
#include<algorithm>
#define int long long
using namespace std;
const int MAXN = 1e5 + , B = ;
inline int read() {
char c = getchar(); int x = , f = ;
while(c < '' || c > '') {if(c == '-') f = -; c = getchar();}
while(c >= '' && c <= '') x = x * + c - '', c = getchar();
return x * f;
}
int P[MAXN];
void Insert(int x) {
for(int i = B; i >= ; i--) {
if((x >> i) & ) {
if(P[i]) x = x ^ P[i];
else {P[i] = x; return ;}
}
}
}
void Debug(int *a, int N) {
for(int i = ; i <= N; i++) {
for(int j = ; j <= B; j++)
printf("%d ", (P[i] >> j) & );
puts("");
}
puts("********");
}
main() {
int QwQ = read();
for(int test = ; test <= QwQ; test++) {
printf("Case #%I64d:\n", test);
memset(P, , sizeof(P));
int N = read();
for(int i = ; i <= N; i++)
Insert(read());
for(int i = B; i >= ; i--) {
if(P[i]) {
for(int j = i + ; j <= B; j++)
if((P[j] >> i) & ) P[j] ^= P[i];
}
}
int now = ;
for(int i = ; i <= B; i++)
if(P[i])
P[now++] = P[i];
int Q = read();
while(Q--) {
int K = read(), ans = ;
if(now != N) K--;
if(K >= (1ll << now)) {puts("-1"); continue;}
for(int i = ; i <= B; i++)
if((K >> i) & )
ans ^= P[i];
printf("%I64d\n", ans);
}
}
}

HDU3949 XOR(线性基第k小)的更多相关文章

  1. hdu 3949 XOR 线性基 第k小异或和

    题目链接 题意 给定\(n\)个数,对其每一个子集计算异或和,求第\(k\)小的异或和. 思路 先求得线性基. 同上题,转化为求其线性基的子集的第k小异或和. 结论 记\(n\)个数的线性基为向量组\ ...

  2. HDU3949 XOR (线性基)

    HDU3949 XOR Problem Description XOR is a kind of bit operator, we define that as follow: for two bin ...

  3. [hdu3949]XOR(线性基求xor第k小)

    题目大意:求xor所有值的第k小,线性基模板题. #include<cstdio> #include<cstring> #include<algorithm> #i ...

  4. HDU 3949 XOR (线性基第k小)题解

    题意: 给出\(n\)个数,求出子集异或第\(k\)小的值,不存在输出-1. 思路: 先用线性基存所有的子集,然后对线性基每一位进行消元,保证只有\(d[i]\)的\(i\)位存在1,那么这样变成了一 ...

  5. Xor && 线性基练习

    #include <cstdio> #include <cstring> ; ; int cnt,Ans,b,x,n; inline int Max(int x,int y) ...

  6. HDU 3949 XOR [高斯消元XOR 线性基]

    3949冰上走 题意: 给你 N个数,从中取出若干个进行异或运算 , 求最后所有可以得到的异或结果中的第k小值 N个数高斯消元求出线性基后,设秩为$r$,那么总共可以组成$2^r$中数字(本题不能不选 ...

  7. hdu 3949 XOR (线性基)

    链接: http://acm.hdu.edu.cn/showproblem.php?pid=3949 题意: 给出n个数,从中任意取几个数字异或,求第k小的异或和 思路: 线性基求第k小异或和,因为题 ...

  8. BZOJ4269:再见Xor(线性基)

    Description 给定N个数,你可以在这些数中任意选一些数出来,每个数可以选任意多次,试求出你能选出的数的异或和的最大值和严格次大值. Input 第一行一个正整数N. 接下来一行N个非负整数. ...

  9. HDU 3949 XOR 线性基

    http://acm.hdu.edu.cn/showproblem.php?pid=3949 求异或第k小,结论是第k小就是 k二进制的第i位为1就把i位的线性基异或上去. 但是这道题和上一道线性基不 ...

随机推荐

  1. 【Codeforces 1030D】Vasya and Triangle

    [链接] 我是链接,点我呀:) [题意] 题意 [题解] 参考这篇题解:https://blog.csdn.net/mitsuha_/article/details/82825862 为什么可以保证m ...

  2. 泛型转换https://www.cnblogs.com/eason-chan/p/3633210.html

    import java.lang.reflect.ParameterizedType;import java.lang.reflect.Type;//总结1.st.getClass==Student. ...

  3. 5-46 新浪微博热门话题 (30分)——unfinished HASH

    5-46 新浪微博热门话题   (30分) 新浪微博可以在发言中嵌入“话题”,即将发言中的话题文字写在一对“#”之间,就可以生成话题链接,点击链接可以看到有多少人在跟自己讨论相同或者相似的话题.新浪微 ...

  4. [kuangbin带你飞]专题四 最短路练习 G MPI Maelstrom

    #include<iostream> #include<cstring> #include<algorithm> #include<iomanip> # ...

  5. react实现ssr服务器端渲染总结和案例(实例)

    1.什么是 SSR SSR 是 server side render 的缩写,从字面上就可以理解 在服务器端渲染,那渲染什么呢,很显然渲染现在框架中的前后端分离所创建的虚拟 DOM 2.为什么要实现服 ...

  6. fibonacci数列的题目——剑指Offer

    https://www.nowcoder.net/practice/c6c7742f5ba7442aada113136ddea0c3?tpId=13&tqId=11160&tPage= ...

  7. ubuntu 搭建 svn服务器,使用http方式访问

    原文: http://blog.csdn.net/wobuxingfang/article/details/70835414 参考:http://www.cnblogs.com/zzugyl/p/36 ...

  8. VM Workstation 虚拟机安装Ghost XP教程

    1 工具和软件准备 VM Workstation虚拟机软件(必须) http://pan.baidu.com/share/link?shareid=304385&uk=637999033   ...

  9. 【基础练习】【高速幂】codevs3285 转圈游戏题解

    转载请注明出处 来自CSDN用户ametake 题目来自NOIP2013TGD1T1 题目描写叙述 Description n 个小伙伴(编号从 0 到 n-1)围坐一圈玩游戏.依照顺时针方向给 n ...

  10. 使用NDIS驱动监測以太网络活动

    转载自: http://blog.csdn.net/ddtpower/article/details/656687   本论文提供了NDIS的主要的理解,应用程序怎样与驱动程序交互.发挥驱动程序最佳性 ...