Pizza Delivery

时间限制: 2 Sec  内存限制: 128 MB

题目描述

Alyssa is a college student, living in New Tsukuba City. All the streets in the city are one-way. A new social experiment starting tomorrow is on alternative traffic regulation reversing the one-way directions of street sections. Reversals will be on one single street section between two adjacent intersections for each day; the directions of all the other sections will not change,and the reversal will be canceled on the next day.
Alyssa orders a piece of pizza everyday from the same pizzeria. The pizza is delivered along the shortest route from the intersection with the pizzeria to the intersection with Alyssa’s house. 
Altering the traffic regulation may change the shortest route. Please tell Alyssa how the social experiment will affect the pizza delivery route.

输入

The input consists of a single test case in the following format.
n m
a1 b1 c1
.
.
.
am bm cm
The first line contains two integers, n, the number of intersections, and m, the number of street sections in New Tsukuba City (2 ≤ n ≤ 100 000, 1 ≤ m ≤ 100 000). The intersections are numbered 1 through n and the street sections are numbered 1 through m. 
The following m lines contain the information about the street sections, each with three integers ai, bi, and ci (1 ≤ ai ≤ n, 1 ≤ bi ≤ n, ai ≠ bi, 1 ≤ ci ≤ 100 000). They mean that the street section numbered i connects two intersections with the one-way direction from ai to bi, which will be reversed on the i-th day. The street section has the length of ci. Note that there may be more than one street section connecting the same pair of intersections.
The pizzeria is on the intersection 1 and Alyssa’s house is on the  intersection 2. It is guaranteed that at least one route exists from the pizzeria to Alyssa’s before the social experiment starts. 

输出

The output should contain m lines. The i-th line should be
• HAPPY if the shortest route on the i-th day will become shorter,
• SOSO if the length of the shortest route on the i-th day will not change, and
• SAD if the shortest route on the i-th day will be longer or if there will be no route from the pizzeria to Alyssa’s house.
Alyssa doesn’t mind whether the delivery bike can go back to the pizzeria or not.

样例输入

4 5
1 3 5
3 4 6
4 2 7
2 1 18
2 3 12

样例输出

SAD
SAD
SAD
SOSO
HAPPY

来源/分类

ICPC 2017 Japan Tsukuba


题意:有向图中,翻转某一条边,问最短路径如何变化(变长,变短,不变)。

分析:设 d(u,v)代表从u到v的最短路,s为起点,t为终点。对于任一边(from,to),若d(s,to)+d(from,t)+value(from,to)< d(s,t),则翻转该边最短路减小。再求出所有最短路径所在的图,该图是DAG,若某一条边是DAG上的桥,则翻转该边后最短路径增大,否则不变。

证明参考:https://icpc.iisf.or.jp/2017-tsukuba/wp-content/uploads/sites/4/2017/12/commentaries2.pdf

做法:求最短路径的话正反跑两遍最短路就好了,让我感觉比较难的地方是求所有最短路径的DAG以及DAG上的桥。

求所有最短路径组成的DAG:对于任一条边(from,to),若d(s,from)+d(to,t)+value(from,to)== d(s,t),则该边是DAG上的边。

求DAG上的桥:第一种方法是把DAG上的有向边全部转化为无向边,然后用tarjan算法求无向图的桥。第二种方法是先统计出S到T的方案数,则有结论:如果这条边是桥边,那么这条边两边的点x、y也是必经点,而且s到x的方案数*y到t的方案数=s到t的方案数,这个是充分必要的。

tarjan求桥:

#include<bits/stdc++.h>
#define N 200050
using namespace std; typedef struct
{
int from,to,value,ori;
} ss; ss edg1[N],edg2[N];
vector<int>edges1[N];
int now_edges1=;
vector<int>edges2[N];
int now_edges2=; int is_bridge[N]= {};
long long dis1[N],dis2[N]; void spfa1()
{
for(int i=; i<N; i++)dis1[i]=LLONG_MAX/;
int vis[N]= {};
queue<int>q;
q.push();
vis[]=;
dis1[]=; while(!q.empty())
{
int now=q.front();
q.pop();
vis[now]=; int Size=edges1[now].size();
for(int i=; i<Size; i++)
{
ss e=edg1[edges1[now][i]];
if(dis1[e.to]>dis1[now]+e.value)
{
dis1[e.to]=dis1[now]+e.value; if(!vis[e.to])
{
q.push(e.to);
vis[e.to]=;
}
}
}
}
} void spfa2()
{
for(int i=; i<N; i++)dis2[i]=LLONG_MAX/;
int vis[N]= {};
queue<int>q;
q.push();
vis[]=;
dis2[]=; while(!q.empty())
{
int now=q.front();
q.pop();
vis[now]=; int Size=edges2[now].size();
for(int i=; i<Size; i++)
{
ss e=edg2[edges2[now][i]];
if(dis2[e.to]>dis2[now]+e.value)
{
dis2[e.to]=dis2[now]+e.value; if(!vis[e.to])
{
q.push(e.to);
vis[e.to]=;
}
}
}
}
} int dfn[N]= {},low[N]= {},now_clo=; void tarjan(int x,int pre)
{
dfn[x]=low[x]=now_clo++;
int Size=edges2[x].size(); for(int i=; i<Size; i++)
{
ss e=edg2[edges2[x][i]]; if(e.to!=pre)
{
if(!dfn[e.to])
{
tarjan(e.to,x);
low[x]=min(low[x],low[e.to]); if(low[e.to]>dfn[x])
{
is_bridge[e.ori]=;
} }
else
{
low[x]=min(low[x],dfn[e.to]);
}
}
}
} int main()
{
int n,m;
scanf("%d %d",&n,&m); for(int i=; i<=m; i++)
{
int u,v,w;
scanf("%d %d %d",&u,&v,&w);
edges1[u].push_back(now_edges1);
edg1[now_edges1++]=(ss){u,v,w,i};
edges2[v].push_back(now_edges2);
edg2[now_edges2++]=(ss){v,u,w,i};
} spfa1();
spfa2(); long long bestedge=dis1[]; for(int i=; i<N; i++)edges2[i].clear();
now_edges2=; for(int i=; i<=n; i++)
{
int Size=edges1[i].size();
for(int j=; j<Size; j++)
{
int u=i,v=edg1[edges1[i][j]].to,w=edg1[edges1[i][j]].value,ori=edg1[edges1[i][j]].ori; if(dis1[u]+dis2[v]+w==bestedge)
{
edges2[u].push_back(now_edges2);
edg2[now_edges2++]=(ss){u,v,,ori};
edges2[v].push_back(now_edges2);
edg2[now_edges2++]=(ss){v,u,,ori};
}
}
} tarjan(,-); int ans[N]= {};
for(int i=; i<=n; i++)
{
int Size=edges1[i].size();
for(int j=; j<Size; j++)
{
int u=i,v=edg1[edges1[i][j]].to,w=edg1[edges1[i][j]].value,ori=edg1[edges1[i][j]].ori; if(dis1[v]+dis2[u]+w<bestedge)ans[ori]=;
else if(is_bridge[ori])ans[ori]=-;
}
} for(int i=; i<=m; i++)
if(ans[i]==)printf("HAPPY\n");
else if(ans[i]==-)printf("SAD\n");
else
printf("SOSO\n");
return ; }

统计路径数求桥:

#include<bits/stdc++.h>
#define N 200050
using namespace std; typedef struct
{
int from,to,value,ori;
} ss; ss edg1[N],edg2[N];
vector<int>edges1[N];
int now_edges1=;
vector<int>edges2[N];
int now_edges2=; int is_in_dag[N]= {};
long long dis1[N],dis2[N]; void spfa1()
{
for(int i=; i<N; i++)dis1[i]=LLONG_MAX/;
int vis[N]= {};
queue<int>q;
q.push();
vis[]=;
dis1[]=; while(!q.empty())
{
int now=q.front();
q.pop();
vis[now]=; int Size=edges1[now].size();
for(int i=; i<Size; i++)
{
ss e=edg1[edges1[now][i]];
if(dis1[e.to]>dis1[now]+e.value)
{
dis1[e.to]=dis1[now]+e.value; if(!vis[e.to])
{
q.push(e.to);
vis[e.to]=;
}
}
}
}
} void spfa2()
{
for(int i=; i<N; i++)dis2[i]=LLONG_MAX/;
int vis[N]= {};
queue<int>q;
q.push();
vis[]=;
dis2[]=; while(!q.empty())
{
int now=q.front();
q.pop();
vis[now]=; int Size=edges2[now].size();
for(int i=; i<Size; i++)
{
ss e=edg2[edges2[now][i]];
if(dis2[e.to]>dis2[now]+e.value)
{
dis2[e.to]=dis2[now]+e.value; if(!vis[e.to])
{
q.push(e.to);
vis[e.to]=;
}
}
}
}
} ss edg3[N],edg4[N];
vector<int>edges3[N];
int now_edges3=;
vector<int>edges4[N];
int now_edges4=; long long num_ways_1[N]={},num_ways_2[N]={};
const long long mod=1e9+; long long dfs1(int x)
{
if(num_ways_1[x])return num_ways_1[x]; long long sum=;
int Size=edges3[x].size();
for(int i=;i<Size;i++)
{
int to=edg3[edges3[x][i]].to;
sum=(sum+dfs1(to))%mod;
} return num_ways_1[x]=sum; } long long dfs2(int x)
{
if(num_ways_2[x])return num_ways_2[x]; long long sum=;
int Size=edges4[x].size();
for(int i=;i<Size;i++)
{
int to=edg4[edges4[x][i]].to;
sum=(sum+dfs2(to))%mod;
} return num_ways_2[x]=sum;
} int main()
{ int n,m;
scanf("%d %d",&n,&m); for(int i=; i<=m; i++)
{
int u,v,w;
scanf("%d %d %d",&u,&v,&w);
edges1[u].push_back(now_edges1);
edg1[now_edges1++]=(ss){u,v,w,i};
edges2[v].push_back(now_edges2);
edg2[now_edges2++]=(ss){v,u,w,i};
} spfa1();
spfa2(); long long bestedge=dis1[]; for(int i=; i<=n; i++)
{
int Size=edges1[i].size();
for(int j=; j<Size; j++)
{
int u=i,v=edg1[edges1[i][j]].to,w=edg1[edges1[i][j]].value,ori=edg1[edges1[i][j]].ori; if(dis1[u]+dis2[v]+w==bestedge)
{
is_in_dag[ori]=; edges3[u].push_back(now_edges3);
edg3[now_edges3++]=(ss){u,v,,ori};
edges4[v].push_back(now_edges4);
edg4[now_edges4++]=(ss){v,u,,ori};
}
}
} num_ways_1[]=;
num_ways_2[]=; int ans[N]={};
for(int i=;i<=n;i++)
{
int Size=edges1[i].size();
for(int j=;j<Size;j++)
{
int u=i,v=edg1[edges1[i][j]].to,w=edg1[edges1[i][j]].value,ori=edg1[edges1[i][j]].ori; if(!is_in_dag[ori]&&dis1[v]+dis2[u]+w<bestedge)ans[ori]=;
else
if(is_in_dag[ori]&&dfs1(v)*dfs2(u)%mod==dfs1())ans[ori]=-;
}
} for(int i=;i<=m;i++)
if(ans[i]==)printf("HAPPY\n");
else
if(ans[i]==-)printf("SAD\n");
else
printf("SOSO\n");
return ; }

Pizza Delivery的更多相关文章

  1. 【暑假】[深入动态规划]UVa 1628 Pizza Delivery

    UVa 1628 Pizza Delivery 题目: http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=51189 思路:    ...

  2. uva1628 Pizza Delivery

    fixing great wall 的变形dp(i,j,k,p)不考虑i-j的客人,还要送k个人,目前位置在p起点i和总数量k都要枚举dp(i,j,k,p)=max(dp(m,j,k-1,p)+val ...

  3. UVa1628 UVaLive5847 Pizza Delivery

    填坑系列(p.302) 既然不知道后面还要卖多少个就加一维状态嘛.. lrj写的O(n)转移?其实转移可以O(1) 貌似按x排序有奇效? #include<cstdio> #include ...

  4. Aizu - 1383 Pizza Delivery (最短路图+DAG上的割边)

    题意:给出一张有向图,每条边有长度,对于每条边,你要回答将该边的方向取反后,从起点到终点的最短距离是增加or减小or不变. 首先求出起点到所有点的最短距离和所有点到终点的最短距离(两次DIjkstra ...

  5. (好题)2017-2018 ACM-ICPC, Asia Tsukuba Regional Contest F Pizza Delivery

    题意:给n个点m条边的有向图.每次使一条边反向,问你1到2的最短路变短,变长,还是不变. 解法:遇到这种题容易想到正向求一遍最短路d1,反向再求一遍最短路d2.纪录原图上的最短路为ans,然后分开考虑 ...

  6. [GodLove]Wine93 Tarining Round #1

    比赛链接: http://acm.hust.edu.cn/vjudge/contest/view.action?cid=44664#overview 题目来源: 2011 Asia Regional ...

  7. CodeForces 151B Phone Numbers

     Phone Numbers Time Limit:2000MS     Memory Limit:262144KB     64bit IO Format:%I64d & %I64u Sub ...

  8. Asia-Tsukuba 2017

    A. Secret of Chocolate Poles DP,$f[i][j]$表示高度为$i$,顶层颜色为$j$的方案数. 时间复杂度$O(l)$. #include<cstdio> ...

  9. 2017-2018 ACM-ICPC, Asia Tsukuba Regional Contest

    2017-2018 ACM-ICPC, Asia Tsukuba Regional Contest A Secret of Chocolate Poles 思路:暴力枚举黑巧克力的个数和厚黑巧克力的个 ...

随机推荐

  1. codevs 3344 迷宫

    时间限制: 1 s  空间限制: 32000 KB  题目等级 : 黄金 Gold 题目描述 Description 小刚在迷宫内,他需要从A点出发,按顺序经过B,C,D……,到达最后一个点,再回到A ...

  2. 如何处理Docker错误消息:please add——insecure-registry

    本地安装Kubernetes时,遇到如下的错误消息: pleade add --insecure-registry gcr.io to daemon's arguments 解决方案:点击Docker ...

  3. WPF中实现两个窗口之间传值

    在使用WPF的时候,我们经常会用到窗体之间传值,下面示例主窗口传值到子窗口,子窗口传值到主窗口的方法. 一.主窗口向子窗口传值 主窗口向子窗口传值主要方法就是在子窗口建立一个接收主窗口值的变量,然后实 ...

  4. 原生JS forEach()和map()遍历,jQuery$.each()和$.map()遍历

    一.原生JS forEach()和map()遍历 共同点: 1.都是循环遍历数组中的每一项. 2.forEach() 和 map() 里面每一次执行匿名函数都支持3个参数:数组中的当前项item,当前 ...

  5. MAC进入文件夹快捷键

    common + O common+up common+Down shift + common +G

  6. BestCoder Round#15 1002-Instruction

    http://acm.hdu.edu.cn/showproblem.php?pid=5083 官方题解——> 1002 Instruction 先考虑编码,首先找到operation对应的编码, ...

  7. MAC环境Android SDK环境变量配置

    一.材料 1.Mac设备1台: 2.下载并更新android SDK:示列中sdk存放路径为/Users/gametest/Library/Android/sdk 二.操作步骤 1.启动Termina ...

  8. bootstrap历练实例: 导航元素中禁用的链接

    对每个 .nav class,如果添加了 .disabled class,则会创建一个灰色的链接,同时禁用了该链接的 :hover 状态, <!DOCTYPE html><html& ...

  9. CS193p Lecture 9 - Animation, Autolayout

    Animation(动画) Demo Dropit续 Autolayout(自动布局) 三种添加自动布局的方法: 使用蓝色辅助虚线,右键选择建议约束(Reset to Suggested Constr ...

  10. 【树形dp】bzoj1304: [CQOI2009]叶子的染色

    又是一道优美的dp Description 给一棵m个结点的无根树,你可以选择一个度数大于1的结点作为根,然后给一些结点(根.内部结点和叶子均可)着以黑色或白色.你的着色方案应该保证根结点到每个叶子的 ...