#include <iostream>
#include <cstring>
#include <cstdlib>
#include <stdio.h>
#include <algorithm>
#include <math.h>
#include <stdlib.h> #include<time.h>
#define ll long long #define INF 0x3f3f3f3f
#define maxn 10000+10
#define cle(a) memset(a,0,sizeof(a))
const double eps=1e-;
using namespace std; const int S=;//随机算法判定次数,S越大,判错概率越小
//计算 (a*b)%c. a,b都是long long的数,直接相乘可能溢出的
// a,b,c <2^63
ll mult_mod(ll a,ll b,ll c)
{
a%=c;
b%=c;
ll ret=;
while(b)
{
if(b&){ret+=a;ret%=c;}
a<<=;
if(a>=c)a%=c;
b>>=;
}
return ret;
}
ll pow_mod(ll x,ll n,ll mod)
{
if(n==)return x%mod;
x%=mod;
ll tmp=x;
ll ret=;
while(n)
{
if(n&) ret=mult_mod(ret,tmp,mod);
tmp=mult_mod(tmp,tmp,mod);
n>>=;
}
return ret;
}
//以a为基,n-1=x*2^t a^(n-1)=1(mod n) 验证n是不是合数
//一定是合数返回true,不一定返回false
bool check(ll a,ll n,ll x,ll t)
{
ll ret=pow_mod(a,x,n);
ll last=ret;
for(int i=;i<=t;i++)
{
ret=mult_mod(ret,ret,n);
if(ret==&&last!=&&last!=n-) return true;//合数
last=ret;
}
if(ret!=) return true;
return false;
}
// Miller_Rabin()算法素数判定
//是素数返回true.(可能是伪素数,但概率极小)
//合数返回false;
bool Miller_Rabin(ll n)
{
if(n<)return false;
if(n==)return true;
if((n&)==) return false;//偶数
ll x=n-;
ll t=;
while((x&)==){x>>=;t++;}
for(int i=;i<S;i++)
{
ll a=rand()%(n-)+;//rand()需要stdlib.h头文件
if(check(a,n,x,t))
return false;//合数
}
return true;
}
ll factor[];//质因数分解结果(刚返回时是无序的)
int tol;//质因数的个数。数组小标从0开始
ll gcd(ll a,ll b)
{
if(a==)return ;//???????
if(a<) return gcd(-a,b);
while(b)
{
ll t=a%b;
a=b;
b=t;
}
return a;
}
ll Pollard_rho(ll x,ll c)
{
ll i=,k=;
ll x0=rand()%x;
ll y=x0;
while()
{
i++;
x0=(mult_mod(x0,x0,x)+c)%x;
ll d=gcd(y-x0,x);
if(d!=&&d!=x) return d;
if(y==x0) return x;
if(i==k){y=x0;k+=k;}
}
}
//对n进行素因子分解
void findfac(ll n)
{
if(Miller_Rabin(n))//素数
{
factor[tol++]=n;
return;
}
ll p=n;
while(p>=n)p=Pollard_rho(p,rand()%(n-)+);
findfac(p);
findfac(n/p);
}
int main()
{
ll n;
while(cin>>n){
tol=;
findfac(n);
for(int i=;i<tol;i++)cout<<factor[i]<<endl;
//质因子
}
return ;
}

大整数分解质因数(Pollard rho算法)的更多相关文章

  1. Miller-Rabin 素性测试 与 Pollard Rho 大整数分解

    \(\\\) Miller-Rabin 素性测试 考虑如何检验一个数字是否为素数. 经典的试除法复杂度 \(O(\sqrt N)\) 适用于询问 \(N\le 10^{16}\) 的时候. 如果我们要 ...

  2. POJ 1811 Prime Test (Pollard rho 大整数分解)

    题意:给出一个N,若N为素数,输出Prime.若为合数,输出最小的素因子.思路:Pollard rho大整数分解,模板题 #include <iostream> #include < ...

  3. Pollard Rho 算法简介

    \(\text{update 2019.8.18}\) 由于本人将大部分精力花在了cnblogs上,而不是洛谷博客,评论区提出的一些问题直到今天才解决. 下面给出的Pollard Rho函数已给出散点 ...

  4. Pollard Rho算法浅谈

    Pollard Rho介绍 Pollard Rho算法是Pollard[1]在1975年[2]发明的一种将大整数因数分解的算法 其中Pollard来源于发明者Pollard的姓,Rho则来自内部伪随机 ...

  5. 初学Pollard Rho算法

    前言 \(Pollard\ Rho\)是一个著名的大数质因数分解算法,它的实现基于一个神奇的算法:\(MillerRabin\)素数测试(关于\(MillerRabin\),可以参考这篇博客:初学Mi ...

  6. Miller Rabin素数检测与Pollard Rho算法

    一些前置知识可以看一下我的联赛前数学知识 如何判断一个数是否为质数 方法一:试除法 扫描\(2\sim \sqrt{n}\)之间的所有整数,依次检查它们能否整除\(n\),若都不能整除,则\(n\)是 ...

  7. Pollard rho算法+Miller Rabin算法 BZOJ 3668 Rabin-Miller算法

    BZOJ 3667: Rabin-Miller算法 Time Limit: 60 Sec  Memory Limit: 512 MBSubmit: 1044  Solved: 322[Submit][ ...

  8. python基础练习题(题目 将一个整数分解质因数。例如:输入90,打印出90=2*3*3*5)

    day9 --------------------------------------------------------------- 实例014:分解质因数 题目 将一个整数分解质因数.例如:输入 ...

  9. 整数(质因子)分解(Pollard rho大整数分解)

    整数分解,又称质因子分解.在数学中,整数分解问题是指:给出一个正整数,将其写成几个素数的乘积的形式. (每个合数都可以写成几个质数相乘的形式,这几个质数就都叫做这个合数的质因数.) .试除法(适用于范 ...

随机推荐

  1. (转)WaitForSingleObject函数的使用

    WaitForSingleObject 函数 DWORD WaitForSingleObject( HANDLE hObject, DWORD dwMilliseconds ); 第一个参数hObje ...

  2. Laravel 5.1 简单学习

    Laravel 5.1 简单学习 (1)Laravel的nginx配置,不配置或者配置错误,可能会报404或500错误,访问不到页面. location / { try_files $uri $uri ...

  3. Google解决跨域

    1.添加   --disable-web-security --user-data-dir=D:\tmp 2.在D的根目录新建tmp文件夹

  4. __new__ 和 __init__

    new 在新式类中负责真正的实例化对象,而__init__只是负责初始化 __new__创建的对象.一般来说 new 创建一个内存对象,也就是实例化的对象的实体,交给__init__进行进一步加工.官 ...

  5. decorate all function in all module

    需求: 有package db_api,其下有很多 module 如 plane.py ship.py ufo.py.这些module内定义了方法如 plane.fly(), ship.float() ...

  6. 关于button中设置文字不显示的问题

    这个因为使用的image加载方式是setimage而不是setbackgroundimage导致文字始终出不来.

  7. 【gradle】mac下 gradle默认本地仓库位置

    gradle默认会把包缓存到用户目录的.gradle目录下,如果你打开.gradle\caches\modules-2\files-2.1,你会发现很多的jar包.mac上的话 ,也就是在/Users ...

  8. GBDT调参

    gbm算法流程图: gbdt 参数:参考scikit-learn The overall parameters can be divided into 3 categories: Tree-Speci ...

  9. 三期_day05_Dao层的准备工作_II

    工作文件夹: 实体类:UserInfo.java package com.yc.crm.entity; import java.util.Date; public class UserInfo { p ...

  10. 向量空间模型实现文档查询(Vector Space Model to realize document query)

    xml中文档(query)的结构: <topic> <number>CIRB010TopicZH006</number> <title>科索沃難民潮&l ...