CH 5402 选课



$ solution: $

最近真是!越做题越觉得自己弱。这道题比较综合,它将有向树和背包结合,完全刷新世界观。首先我们可以发现这些课程显然不能随意调动顺序来背包,他们之间的关系可以用一颗有向树来表示(每一个节点代表一门课程,要选这门课程必须将它的祖先全都选了),但是这些树可能是分开的一片森林,所以我们可以建一个虚点将所有的没有父亲的根连在一起。这样我们发现我们直接从根开始背包是很没有思路的,后效性非常多。于是我们按照DP的一般规律从已知到未知,先从叶子节点开始由小树到大树。我们在某一棵子树上完全背包时就不必去管之前的必要课程,然后以每一个节点都来一次分组背包也满足有局部的最优解扩散到整体上去。



$ code: $

#include<iostream>
#include<cstdio>
#include<iomanip>
#include<algorithm>
#include<cstring>
#include<cstdlib>
#include<ctime>
#include<cmath>
#include<vector>
#include<queue>
#include<map>
#include<set> #define ll long long
#define db double
#define rg register int using namespace std; int n,m,ff,top;
int a[305];
int f[305][305]; int tou[305];
struct su{
int to,next;
}b[305]; inline int qr(){
register char ch; register bool sign=0; rg res=0;
while(!isdigit(ch=getchar())) if(ch=='-')sign=1;
while(isdigit(ch)) res=res*10+(ch^48),ch=getchar();
return sign?-res:res;
} inline void add(int x,int y){
b[++top].to=y; b[top].next=tou[x]; tou[x]=top;
} inline void dfs(int i){
for(rg j=tou[i];j;j=b[j].next){
rg to=b[j].to; dfs(to);
for(rg p=m;p>0;--p)
for(rg q=0;q<p;++q)
f[i][p]=max(f[i][p],f[i][q]+f[to][p-q]);
}if(i)for(rg k=m;k>0;--k)f[i][k]=f[i][k-1]+a[i];
} int main(){
//freopen(".in","r",stdin);
//freopen(".out","w",stdout);
n=qr(); m=qr();
for(rg i=1;i<=n;++i)
add(qr(),i),a[i]=qr();
dfs(0); printf("%d\n",f[0][m]);
return 0;
}

CH 5402 选课(分组背包+树形DP)的更多相关文章

  1. P1273 有线电视网[分组背包+树形dp]

    题目描述 某收费有线电视网计划转播一场重要的足球比赛.他们的转播网和用户终端构成一棵树状结构,这棵树的根结点位于足球比赛的现场,树叶为各个用户终端,其他中转站为该树的内部节点. 从转播站到转播站以及从 ...

  2. HDU 4003 Find Metal Mineral(分组背包+树形DP)

    题目链接 很棒的一个树形DP.学的太渣了. #include <cstdio> #include <string> #include <cstring> #incl ...

  3. hdu 1561 The more, The Better (依赖背包 树形dp)

    题目: 链接:点击打开链接 题意: 非常明显的依赖背包. 思路: dp[i][j]表示以i为根结点时攻击j个城堡得到的最大值.(以i为根的子树选择j个点所能达到的最优值) dp[root][j] = ...

  4. P2014 选课 题解(树形DP)

    题目链接 P2014 选课 解题思路 树形动归,用\(f[i][j]\)表示以\(i\)为根,\(j\)个子节点(不包括自己)的最大学分 首先根据题意建图,用根节点\(0\)将森林连成树. 从根节点开 ...

  5. 刷题总结——选课(ssoj树形dp+记忆化搜索+多叉树转二叉树)

    题目: 题目描述 学校实行学分制.每门的必修课都有固定的学分,同时还必须获得相应的选修课程学分.学校开设了 N(N<300)门的选修课程,每个学生可选课程的数量 M 是给定的.学生选修了这M门课 ...

  6. CTSC1998 选课(背包类树形Dp)

    题意: 给出 n 节课的先修课号以及学分(先修课号指的是在学习某节课时先需要学习的课程),求学 m 节课的最大学分. 细节: 1.对于课程 a 其先修课号为 b ,对于课程 b 其先修课号为 c ,则 ...

  7. HDU 1561 The more, The Better (有依赖背包 || 树形DP)

    题目链接 Problem Description ACboy很喜欢玩一种战略游戏,在一个地图上,有N座城堡,每座城堡都有一定的宝物,在每次游戏中ACboy允许攻克M个城堡并获得里面的宝物.但由于地理位 ...

  8. HDU4003Find Metal Mineral[树形DP 分组背包]

    Find Metal Mineral Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65768/65768 K (Java/Other ...

  9. joyOI 选课 【树形dp + 背包dp】

    题目链接 选课 题解 基础背包树形dp #include<iostream> #include<cstdio> #include<cmath> #include&l ...

随机推荐

  1. Python logging 学习

    基本用法: import logging #初始化logger 对象 logger = logging.getLogger("main") #设置logger对象基础级别,后面的h ...

  2. BZOJ3261 最大异或和 【可持久化trie树】

    题目 给定一个非负整数序列{a},初始长度为N. 有M个操作,有以下两种操作类型: 1.Ax:添加操作,表示在序列末尾添加一个数x,序列的长度N+1. 2.Qlrx:询问操作,你需要找到一个位置p,满 ...

  3. 【noip】noip201503求和(题解可能不完美,但绝对详细)

    3. 求和 难度级别:B: 运行时间限制:1000ms: 运行空间限制:51200KB: 代码长度限制:2000000B 题目描述   一条狭长的纸带被均匀划分出了n个格子,格子编号从1到n.每个格子 ...

  4. hdu 5012 bfs 康托展开

    Dice Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) Total Submi ...

  5. 安装破解版的webstorne

    参考以下链接:https://www.cnblogs.com/cui-cui/p/8507435.html

  6. Codeforces 616 E Sum of Remainders

    Discription Calculate the value of the sum: n mod 1 + n mod 2 + n mod 3 + ... + n mod m. As the resu ...

  7. JavaSE的static、final、abstract修饰符

    static :静态常量,静态方法,静态代码块     静态变量:  静态变量属于类的,使用类名来访问,非静态变量是属于对象的,"必须"使用对象来访问.           注意: ...

  8. Junit4 断言新方法

    话不多少说,直接上代码 package ASSERTTEST; import org.junit.Assert; import org.hamcrest.*;import org.junit.Test ...

  9. 【PowerShell 学习系列】-- 删除Win10自带应用

    Get-AppxPackage *3d* | Remove-AppxPackage Get-AppxPackage *camera* | Remove-AppxPackage Get-AppxPack ...

  10. VC/MFC中计算程序运行时间

    转自原文VC/MFC中计算程序运行时间 说明,这四种方法也分别代表了类似的实现,在MFC中,所可以从哪些类集合去考虑. 方法一 利用GetTickCount函数(ms) CString str; lo ...