Triangle Counting

Input: Standard Input

Output: Standard Output

You are given n rods of length 1, 2…, n. You have to pick any 3 of them & build a triangle. How many distinct triangles can you make? Note that, two triangles will be considered different if they have at least 1 pair of arms with different length.

Input

The input for each case will have only a single positive integer (3<=n<=1000000). The end of input will be indicated by a case with n<3. This case should not be processed.

Output

 

For each test case, print the number of distinct triangles you can make.

Sample Input                                                  Output for Sample Input

5

8

0

3

22

题目描述:

有多少种方法可以从1,2,3,,,,n中选出三个不同的整数,可以组成三角形。

1 数学分析:

设最大边长为x的三角形与c[x]个。

y+z>x;

x-y<z<x;

枚举y的长度,就可以得到z的个数。

y==1,z无解;

y==2,z=x-1;

y==3,z=x-1 ,x-2;

......

y=x-1,z=2,3,4,,,x-1;

等差数列求和.(x-1)*(x-2)/2;

去除y==z,和重复计算的种类.

y==z有多少种呢?

y的取值从x/2+1开始到x-1为止,因为这样也能组成三角形。

c[x]=( (x-1)(x-2)/2-(x-1)/2 ) 、2;

f[x]=f[x-1]+c[x];

2  直接观察:

n为偶数时:

2 n-1 (1)

3 n-2  (2)

4 n-3

......

m  m+1 (n-m-1)

m+1 m+2 (n-m-2)

.....

n-2 n-1   1

f[i]=f[i-1]+(i*i-4*i+4)/4;利用等差数列求和

n为奇数时:

2 n-1 (1)

3 n-2  (2)

4 n-3

......

m  m+2 (n-m-2)

m+1 m+2 (n-m-2)

.....

n-2 n-1   1

f[i]=f[i-1]+(i-i/2-1) * (i-3) /2;

#include<stdio.h>
typedef long long i64;
long long f[1000000];
void solve()
{ f[3]=0;
for(long long i=4;i<=1000000;i++)
{
f[i]=0;
if( (i & 1)==0 ) //i为偶数
f[i]=f[i-1]+(i*i-4*i+4)/4;
else
f[i]=f[i-1]+(i-i/2-1) * (i-3) /2;
} }
int main()
{
solve();
int n;
while(scanf("%lld",&n)!=EOF&&n>=3)
{
printf("%lld\n",f[n]);
}
return 0;
}

  

/*
设最大边长为x的三角形有c(x)个,跟三角形的定义两边之和大于第三边有x<y+z
变形下的x-y<z<x;当y=1时无解,当y=2时只有一个解z=x-1,知道y=x-1时又x-2个解
,所以共有(x-1)(x-2)/2个解,由于题意中不能存在y=z的解所以y=z这部分解,
当x/2+1至x-1才存在y=z的可能,共有(x-1)/2个.还过有过程中每种三角形算了两遍
所以c(x)=((x-1)(x-2)/2-(x-1)/2)/2);
f(n)=c(1)+c(2)+.....+c(n);
*/
#include<iostream>
#include<cstdio>
using namespace std;
__int64 f[]; void Init()
{
__int64 i;//用int定义结果Wrong answer,不定义__int64计算过程中会溢出
f[]=;
f[]=;
f[]=;
for(i=;i<=;i++)
f[i]=f[i-]+((i-)*(i-)/-(i-)/)/;
} int main()
{
Init();
int n;
while(cin>>n,n>=)
printf("%I64d\n",f[n]);
return ;
}

uva 11401的更多相关文章

  1. uva 11401 Triangle Counting

    // uva 11401 Triangle Counting // // 题目大意: // // 求n范围内,任意选三个不同的数,能组成三角形的个数 // // 解题方法: // // 我们设三角巷的 ...

  2. Uva 11401 数三角形

    题目链接:https://uva.onlinejudge.org/external/114/11401.pdf 题意:1~n个数里面挑3个不同的数,组成一个三角形.求方案数. 分析: 令最长的边为X, ...

  3. 【UVA 11401】Triangle Counting

    题 题意 求1到n长度的n根棍子(3≤n≤1000000)能组成多少不同三角形. 分析 我看大家的递推公式都是 a[i]=a[i-1]+ ((i-1)*(i-2)/2-(i-1)/2)/2; 以i 为 ...

  4. UVA 11401 - Triangle CountingTriangle Counting 数学

    You are given n rods of length 1,2, . . . , n. You have to pick any 3 of them and build a triangle. ...

  5. UVa 11401 三角形的个数

    题意:由1,2,3...n组成的序列中找三个数,且以这三个数为变长能组成三角形,求这样的三角形个数. 思路:当每次输入n时重新都计算一遍会TLE...先预处理,将结果存入ans数组. 代码: #inc ...

  6. Triangle Counting UVA - 11401(递推)

    大白书讲的很好.. #include <iostream> #include <cstring> using namespace std; typedef long long ...

  7. 【递推】【组合计数】UVA - 11401 - Triangle Counting

    http://blog.csdn.net/highacm/article/details/8629173 题目大意:计算从1,2,3,...,n中选出3个不同的整数,使得以它们为边长可以构成三角形的个 ...

  8. UVa 11401 Triangle Counting (计数DP)

    题意:给定一个数 n,从1-n这些数中任意挑出3个数,能组成三角形的数目. 析:dp[i] 表示从1-i 个中任意挑出3个数,能组成三角形的数目. 代码如下: #pragma comment(link ...

  9. UVA计数方法练习[3]

    UVA - 11538 Chess Queen 题意:n*m放置两个互相攻击的后的方案数 分开讨论行 列 两条对角线 一个求和式 可以化简后计算 // // main.cpp // uva11538 ...

随机推荐

  1. hihoCoder#1196 : 高斯消元·二(开关灯问题)

    传送门 高斯消元解异或方程组 小Ho在游戏板上忙碌了30分钟,任然没有办法完成,于是他只好求助于小Hi. 小Ho:小Hi,这次又该怎么办呢? 小Hi:让我们来分析一下吧. 首先对于每一个格子的状态,可 ...

  2. [转]SQL SERVER数据库还原的方法

    SQL SERVER数据库还原的方法 在SQL SERVER 2005下还原数据库 1.新建数据库A,右键还原数据库,此时目标数据库为A,选择备份 文件B_db_201311040200.BAK,还原 ...

  3. 同步OR异步?WebFlux开发真的比Servlet开发要快?顺便再科普下CompletableFuture

    在看下文之前,先给大家科普一点基础知识 Runable:线程任务类接口,没有返回值 Callable:与上面的不同就是有返回值 Executor:定义了线程池执行任务的接口,不过只定义了Runable ...

  4. 51nod1040 最大公约数之和

    求$\sum_{i=1}^{n}(i,n)$.n<=1e9. $\sum_{i=1}^{n}(i,n)=\sum_{d|n}d\sum_{i=1}^{n}[(i,n)=d]=\sum_{d|n} ...

  5. msp430项目编程02

    msp430中项目---液晶1602显示 1.液晶1602工作原理 2.电路原理说明 3.代码(静态显示) 4.代码(动态显示) 5.项目总结 msp430项目编程 msp430入门学习

  6. 解决Flex4在Module里调用PopUpManager报错问题

    项目大了 就需要用到Module, 发现在一个Module里边, 和普通应用里一样popup一个组件的时候, 总是会报错. 这个在Flex3的时候也会出现, 会报样式错误 所以就想到了addPopUp ...

  7. POJ 2337 【字典序】【欧拉回路】

    题意: 给你一些单词,判断这些单词能否在保证首尾单词相同的情况下连成一排. 如果有多组解,输出字典序最小的一组解. 这题... WA了两天. 错误有以下: 1.没有初始化好起始位置,默认起始位置是a了 ...

  8. Friefox清除旧的网页缓存

    Ctrl + F5 适用于调试网页编码时,不断以旧设置显示页面

  9. DLL混淆

  10. 动态标绘演示系统1.4.3(for ArcGIS Flex)

    标绘有API文档啦! 在线浏览 ------------------------------------------------------------------------------------ ...