bzoj 2561: 最小生成树【最小割】
看错题了以为多组询问吓得不行……
其实还挺好想的,就是数据范围一点都不网络流。把U作为s,V作为t,以最小生成树为例,(U,V,L)要在最小生成树上,就要求所有边权比L小的边不能连通(U,V)所在的联通块。这样一来模型就很显然了,就是对所有边权<L的边建边(u,v,1)(v,u,1),然后最小割即可。建双向边是因为反正只会割掉一条……
#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
#include<algorithm>
using namespace std;
const int N=2000005,inf=1e9;
int n,m,h[N],cnt=1,le[N],s,t,len,ans;
struct qw
{
int u,v,c;
}a[N];
bool cmp(const qw &a,const qw &b)
{
return a.c<b.c;
}
struct qwe
{
int ne,to,va;
}e[N];
int read()
{
int r=0,f=1;
char p=getchar();
while(p>'9'||p<'0')
{
if(p=='-')
f=-1;
p=getchar();
}
while(p>='0'&&p<='9')
{
r=r*10+p-48;
p=getchar();
}
return r*f;
}
void add(int u,int v,int w)
{
cnt++;
e[cnt].ne=h[u];
e[cnt].to=v;
e[cnt].va=w;
h[u]=cnt;
}
void ins(int u,int v,int w)
{
add(u,v,w);
add(v,u,w);
}
bool bfs()
{
queue<int>q;
memset(le,0,sizeof(le));
le[s]=1;
q.push(s);
while(!q.empty())
{
int u=q.front();
q.pop();
for(int i=h[u];i;i=e[i].ne)
if(e[i].va>0&&!le[e[i].to])
{
le[e[i].to]=le[u]+1;
q.push(e[i].to);
}
}
return le[t];
}
int dfs(int u,int f)
{
if(!f||u==t)
return f;
int us=0;
for(int i=h[u];i&&us<f;i=e[i].ne)
if(e[i].va>0&&le[e[i].to]==le[u]+1)
{
int t=dfs(e[i].to,min(e[i].va,f-us));
e[i].va-=t;
e[i^1].va+=t;
us+=t;
}
if(!us)
le[u]=0;
return us;
}
int dinic()
{
int re=0;
while(bfs())
re+=dfs(s,inf);
return re;
}
int main()
{
n=read(),m=read();
for(int i=1;i<=m;i++)
a[i].u=read(),a[i].v=read(),a[i].c=read();
s=read(),t=read(),len=read();
sort(a+1,a+1+m,cmp);
for(int i=1;i<=m;i++)
{
if(a[i].c<len)
ins(a[i].u,a[i].v,1);
else
break;
}
ans=dinic();
memset(h,0,sizeof(h));
cnt=1;
for(int i=m;i>=1;i--)
{
if(a[i].c>len)
ins(a[i].u,a[i].v,1);
else
break;
}
printf("%d\n",ans+dinic());
return 0;
}
bzoj 2561: 最小生成树【最小割】的更多相关文章
- BZOJ 2561: 最小生成树(最小割)
U,V能在最小(大)生成树上,当且仅当权值比它小(大)的边无法连通U,V. 两次最小割就OK了. --------------------------------------------------- ...
- BZOJ 2521 最小生成树(最小割)
http://www.lydsy.com/JudgeOnline/problem.php?id=2521 题意:每次能增加一条边的权值1,求最小代价让一条边保证在最小生成树里 思路:如果两个点中有环, ...
- BZOJ 2561 最小生成树 | 网络流 最小割
链接 BZOJ 2561 题解 用Kruskal算法的思路来考虑,边(u, v, L)可能出现在最小生成树上,就是说对于所有边权小于L的边,u和v不能连通,即求最小割: 对于最大生成树的情况也一样.容 ...
- BZOJ.2521.[SHOI2010]最小生成树(最小割ISAP/Dinic)
题目链接 一条边不变其它边减少可以看做一条边增加其它边不变. 假设要加的边lab为(A->B,v),那么肯定是要使除这条边外,A->B的每条路径上的最小权值都\(>v\),这样在连通 ...
- 【BZOJ-2521】最小生成树 最小割
2521: [Shoi2010]最小生成树 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 415 Solved: 242[Submit][Statu ...
- BZOJ 2561 最小生成树(最大流)
题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=2561 题意:给定一个边带正权的连通无向图G= (V,E),其中N=|V|,M=|E|,N ...
- BZOJ2521:[SHOI2010]最小生成树(最小割)
Description Secsa最近对最小生成树问题特别感兴趣.他已经知道如果要去求出一个n个点.m条边的无向图的最小生成树有一个Krustal算法和另一个Prim的算法.另外,他还知道,某一个图可 ...
- BZOJ2561最小生成树——最小割
题目描述 给定一个边带正权的连通无向图G=(V,E),其中N=|V|,M=|E|,N个点从1到N依次编号,给定三个正整数u,v,和L (u≠v),假设现在加入一条边权为L的边(u,v),那么需要删掉最 ...
- BZOJ2521[Shoi2010]最小生成树——最小割
题目描述 Secsa最近对最小生成树问题特别感兴趣.他已经知道如果要去求出一个n个点.m条边的无向图的最小生成树有一个Krustal算法和另一个Prim的算法.另外,他还知道,某一个图可能有多种不同的 ...
随机推荐
- HDU 1669 二分图多重匹配+二分
Jamie's Contact Groups Time Limit: 15000/7000 MS (Java/Others) Memory Limit: 65535/65535 K (Java/ ...
- 基于GDAL的栅格图像空间插值预处理
转自 基于GDAL的栅格图像空间插值预处理——C语言版 基于GDAL的栅格图像预处理 前言 栅格数据和矢量数据构成空间数据的主要来源,怎样以开源方式读取并处理这些空间数据?目前有多种开源支持包,这里只 ...
- sklearn特征工程总结
转自: http://www.cnblogs.com/jasonfreak/p/5448385.html https://www.zhihu.com/question/28641663/answer/ ...
- FTRL (Follow-the-regularized-Leader)算法
Online gradient descent(OGD) produces excellent prediction accuracy with a minimum of computing reso ...
- History(历史)命令用法 15 例
如果你经常使用 Linux 命令行,那么使用 history(历史)命令可以有效地提升你的效率.本文将通过实例的方式向你介绍 history 命令的 15 个用法. 使用 HISTTIMEFORMAT ...
- Ubuntu虚拟机+ROS+Android开发环境配置笔记
Ubuntu虚拟机+ROS+Android开发环境配置笔记 虚拟机设置: 1.本地环境:Windows 7:VMWare:联网 2.虚拟环境 :Ubuntu 14.04. 比較稳定,且支持非常多ROS ...
- Linux学习笔记总结
零.求人不如求已: 1. 在Linux中,文件,目录,驱动,命令,脚本都视为文件,也即一切皆file. 2.记住使用Linux 的关键就是六个字: 命令.选项.參数. 3.学会看帮助,不 ...
- 精通CSS:高级Web标准解决方式(第2版)
精通CSS:高级Web标准解决方式(第2版) 跳转至: 导航. 搜索 层叠重要度:(也就是说.用户!important能够覆盖inline style) !important.用户>作者.最后是 ...
- 全栈JavaScript之路(十六)HTML5 HTMLDocument 类型的变化
HTML5 扩展了 HTMLDocument, 添加了新的功能. 1.document.readState = 'loading' || 'complete' //支持readyState 属性的浏 ...
- Redis实践系列丨Codis数据迁移原理与优化
Codis介绍 Codis 是一种Redis集群的实现方案,与Redis社区的Redis cluster类似,基于slot的分片机制构建一个更大的Redis节点集群,对于连接到codis的Redis客 ...