文章被盗还是非常严重,加版权信息

转载请注明出处 [ametake版权全部]http://blog.csdn.net/ametake欢迎来看看

这道题目是线性动归 可是思想和背包有些类似 事实上线性动归非常多思想都是背包类似 所以还是依照线性动归分类

果然写了2就不想再写1的DP版本号了= =

题目描写叙述 Description

数轴上有n条线段,线段的两端都是整数坐标。坐标范围在0~1000000,每条线段有一个价值。请从n条线段中挑出若干条线段,使得这些线段两两不覆盖(端点能够重合)且线段价值之和最大。

n<=1000

输入描写叙述 Input Description

第一行一个整数n,表示有多少条线段。

接下来n行每行三个整数, ai bi ci,分别代表第i条线段的左端点ai。右端点bi(保证左端点<右端点)和价值ci。

输出描写叙述 Output Description

输出可以获得的最大价值

例子输入 Sample Input

3

1 2 1

2 3 2

1 3 4

例子输出 Sample Output

4

数据范围及提示 Data Size & Hint

数据范围

对于40%的数据。n≤10。

对于100%的数据,n≤1000。

0<=ai,bi<=1000000

0<=ci<=1000000

题目如上

思想是用结构体存储左右端点和值 f[i]表示的是选第i条线段所能有的最大值 方程f[i]=max{f[j]}+a[i].c 当中0<j<i且a[j].r<=a[i].l 即除端点外两线段不重叠 最后扫一遍

注意 f[i]表示的是选第i条线段所能有的最大值 并非前i条线段 私以为假设表示前i条的话可能还要多一维 但没想到非常好的方法 codevs题解区好像有人用前i条做的 能够看一下

一次性A真高兴

上代码


——不敢高声语,恐惊天上人。

【基础练习】【线性DP】codevs3027 线段覆盖2题解的更多相关文章

  1. DP基础(线性DP)总结

    DP基础(线性DP)总结 前言:虽然确实有点基础......但凡事得脚踏实地地做,基础不牢,地动山摇,,,嗯! LIS(最长上升子序列) dp方程:dp[i]=max{dp[j]+1,a[j]< ...

  2. codevs3027线段覆盖2(DP)题解

    题目描述 Description 数轴上有n条线段,线段的两端都是整数坐标,坐标范围在0~1000000,每条线段有一个价值,请从n条线段中挑出若干条线段,使得这些线段两两不覆盖(端点可以重合)且线段 ...

  3. UVA - 11584 DP 最少线段覆盖

    题意:用最少的不可交线段覆盖整个区间,求该最小值 课上摸鱼的时候没注意到题意的转换,写了没啥卵用的回文中心最长枚举,所以代码里的st和h/h2是几乎没用的 注意状态转移的时候不要只用最长线段去转移,这 ...

  4. 【基础练习】【线性DP】codevs3641 上帝选人题解

    这道题目的数据最后一个有问题,特殊处理了 上题目 题目描写叙述 Description 世界上的人都有智商IQ和情商EQ.我们用两个数字来表示人的智商和情商,数字大就代表其对应智商或情商高. 如今你面 ...

  5. 【日常学习】【线性DP】codevs1044 拦截导弹题解

    题目描写叙述 Description 某国为了防御敌国的导弹突击,发展出一种导弹拦截系统.可是这样的导弹拦截系统有一个缺陷:尽管它的第一发炮弹可以到达随意的高度,可是以后每一发炮弹都不能高于前一发的高 ...

  6. POJ2779 线性DP 或 杨氏三角 和 钩子公式

    POJ2779 线性DP 或 杨氏三角 和 钩子公式 本来就想回顾一下基础的线性DP谁知道今早碰到的都是这种大难题,QQQQ,不会 这个也没有去理解线性DP的解法,了解了杨氏三角和钩子公式,做出了PO ...

  7. 非常完整的线性DP及记忆化搜索讲义

    基础概念 我们之前的课程当中接触了最基础的动态规划. 动态规划最重要的就是找到一个状态和状态转移方程. 除此之外,动态规划问题分析中还有一些重要性质,如:重叠子问题.最优子结构.无后效性等. 最优子结 ...

  8. CODEVS3037 线段覆盖 5[序列DP 二分]

    3037 线段覆盖 5   时间限制: 3 s   空间限制: 256000 KB   题目等级 : 钻石 Diamond 题解       题目描述 Description 数轴上有n条线段,线段的 ...

  9. 【codevs3012+codevs3037】线段覆盖4+线段覆盖5(DP)

    线段覆盖4网址:http://codevs.cn/problem/3012/ 线段覆盖5网址:http://codevs.cn/problem/3037/ 题目大意:给出一条直线上的一坨线段,每条线段 ...

随机推荐

  1. 【chm】【windows】win7下chm打开不显示内容

    修改chm属性里面,‘解除锁定’即可.点击chm文件,右键选择属性,点击最下方的解除锁定,保存,退出重新打开即可. ​

  2. 入门人工智能的首选语言为什么会是Python?

    为何人工智能(AI)首选Python?当你读完这篇文章就会明白了.为何人工智能(AI)首选Python?读完这篇文章你就知道了.我们看谷歌的TensorFlow基本上所有的代码都是C++和Python ...

  3. PyCharm 社区版创建Django项目的一个方法

    PyCharm 社区版创建项目无法选择Django等项目,只能选择Python项目. 你在进行练习的时候为了方便,可以用过期了的PyCharm专业版在可用的30分钟内创建社区版本不支持的项目,再用Py ...

  4. 启动myeclipse出现JVM terminated. Exit code=-1

    在启动myeclipse时出现如图: 解决方法 第一种: myeclipse.ini中内存设置过大导致 修改: 256m改成128m,512m 改为 256m. 第二种:在myeclipse.ini ...

  5. Hi3519V101 Uboot和Kernel编译

    前面已经搭建好了Ubuntu下的海思开发环境,现在对编译Uboot和Kernel的过程做一个简单的记录.参考文档<Hi3519V101 U-boot 移植应用开发指南.pdf>和<H ...

  6. Caffe 编译: undefined reference to imencode()

    本系列文章由 @yhl_leo 出品,转载请注明出处. 文章链接: http://blog.csdn.net/yhl_leo/article/details/52150781 整理之前编译工程中遇到的 ...

  7. 查询UNDO使用情况

    查看UNDO事务占用情况 SELECT s.username, s.sid, pr.PID, s.OSUSER, s.MACHINE, s.PROGRAM, rs.segment_id, r.usn, ...

  8. BZOJ 3611 [Heoi2014]大工程 ——虚树

    虚树第二题.... 同BZOJ2286 #include <map> #include <cmath> #include <queue> #include < ...

  9. HDU 3949 XOR ——线形基 高斯消元

    [题目分析] 异或空间的K小值. 高斯消元和动态维护线形基两种方法都试了试. 动态维护更好些,也更快(QAQ,我要高斯消元有何用) 高斯消元可以用来开拓视野. 注意0和-1的情况 [代码] 高斯消元 ...

  10. echarts3样例

    <script type="text/javascript" src="echarts.min.js"></script> <di ...