需求:

用mapreduce实现
select order.orderid,order.pdtid,pdts.pdt_name,oder.amount
from order
join pdts
on order.pdtid=pdts.pdtid

数据:

orders.txt

Order_0000001,pd001,222.8
Order_0000001,pd005,25.8
Order_0000002,pd005,325.8
Order_0000002,pd003,522.8
Order_0000002,pd004,122.4
Order_0000003,pd001,222.8
Order_0000003,pd001,322.8

pdts.txt

pd001,apple
pd002,banana
pd003,orange
pd004,xiaomi
pd005,meizu

pom.xml

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven-v4_0_0.xsd"> <modelVersion>4.0.0</modelVersion> <groupId>com.cyf</groupId>
<artifactId>MapReduceCases</artifactId>
<packaging>jar</packaging>
<version>1.0</version> <properties>
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
<project.reporting.outputEncoding>UTF-8</project.reporting.outputEncoding>
</properties>
<dependencies>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-common</artifactId>
<version>2.6.4</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-hdfs</artifactId>
<version>2.6.4</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-client</artifactId>
<version>2.6.4</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-mapreduce-client-core</artifactId>
<version>2.6.4</version>
</dependency> <dependency>
<groupId>com.alibaba</groupId>
<artifactId>fastjson</artifactId>
<version>1.1.40</version>
</dependency> <dependency>
<groupId>mysql</groupId>
<artifactId>mysql-connector-java</artifactId>
<version>5.1.36</version>
</dependency>
</dependencies> <build>
<plugins>
<plugin>
<artifactId>maven-assembly-plugin</artifactId>
<configuration>
<appendAssemblyId>false</appendAssemblyId>
<descriptorRefs>
<descriptorRef>jar-with-dependencies</descriptorRef>
</descriptorRefs>
<archive>
<manifest>
<mainClass>cn.itcast.mapreduce.CacheFile.MapJoinDistributedCacheFile</mainClass>
</manifest>
</archive>
</configuration>
<executions>
<execution>
<id>make-assembly</id>
<phase>package</phase>
<goals>
<goal>assembly</goal>
</goals>
</execution>
</executions>
</plugin>
</plugins>
</build> </project>
package cn.itcast.mapreduce.CacheFile;

import java.io.BufferedReader;
import java.io.FileReader;
import java.io.IOException;
import java.net.URI;
import java.util.HashMap; import org.apache.commons.lang.StringUtils;
import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IOUtils;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; public class MapJoinDistributedCacheFile {
private static final Log log = LogFactory.getLog(MapJoinDistributedCacheFile.class); public static class MapJoinDistributedCacheFileMapper extends Mapper<LongWritable, Text, Text, NullWritable> { FileReader in = null;
BufferedReader reader = null;
HashMap<String, String[]> b_tab = new HashMap<String, String[]>(); @Override
protected void setup(Context context) throws IOException, InterruptedException {
// 此处加载的是产品表的数据
in = new FileReader("pdts.txt");
reader = new BufferedReader(in);
String line = null;
while (StringUtils.isNotBlank((line = reader.readLine()))) {
String[] split = line.split(",");
String[] products = {split[0], split[1]};
b_tab.put(split[0], products);
}
IOUtils.closeStream(reader);
IOUtils.closeStream(in);
} @Override
protected void map(LongWritable key, Text value, Context context)
throws IOException, InterruptedException {
String line = value.toString();
String[] orderFields = line.split(",");
String pdt_id = orderFields[1];
String[] pdtFields = b_tab.get(pdt_id);
String ll = orderFields[0] + "\t" + pdtFields[1] + "\t" + orderFields[1] + "\t" + orderFields[2];
context.write(new Text(ll), NullWritable.get());
}
} public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
Job job = Job.getInstance(conf); // job.setJarByClass(MapJoinDistributedCacheFile.class);
//告诉框架,我们的程序所在jar包的位置
job.setJar("/root/MapJoinDistributedCacheFile.jar");
job.setMapperClass(MapJoinDistributedCacheFileMapper.class); job.setOutputKeyClass(Text.class);
job.setOutputValueClass(NullWritable.class); FileInputFormat.setInputPaths(job, new Path("/mapjoin/input"));
FileOutputFormat.setOutputPath(job, new Path("/mapjoin/output")); job.setNumReduceTasks(0); // job.addCacheFile(new URI("file:/D:/pdts.txt"));
job.addCacheFile(new URI("hdfs://mini1:9000/cachefile/pdts.txt")); job.waitForCompletion(true);
}
}

创建文件夹上传数据

hadoop fs -mkdir -p /cachefile

hadoop fs -put pdts.txt /cachefile

hadoop fs -mkdir -p /mapjoin/input

hadoop fs -put orders.txt /mapjoin/input

打包并运行

运行

hadoop jar MapJoinDistributedCacheFile.jar cn.itcast.mapreduce.CacheFile.MapJoinDistributedCacheFile

运行结果

大数据学习——mapreduce案例join算法的更多相关文章

  1. 大数据学习之BigData常用算法和数据结构

    大数据学习之BigData常用算法和数据结构 1.Bloom Filter     由一个很长的二进制向量和一系列hash函数组成     优点:可以减少IO操作,省空间     缺点:不支持删除,有 ...

  2. 大数据学习——mapreduce运营商日志增强

    需求 1.对原始json数据进行解析,变成普通文本数据 2.求出每个人评分最高的3部电影 3.求出被评分次数最多的3部电影 数据 https://pan.baidu.com/s/1gPsQXVYSQE ...

  3. 大数据学习——mapreduce学习topN问题

    求每一个订单中成交金额最大的那一笔  top1 数据 Order_0000001,Pdt_01,222.8 Order_0000001,Pdt_05,25.8 Order_0000002,Pdt_05 ...

  4. 大数据学习——mapreduce共同好友

    数据 commonfriends.txt A:B,C,D,F,E,O B:A,C,E,K C:F,A,D,I D:A,E,F,L E:B,C,D,M,L F:A,B,C,D,E,O,M G:A,C,D ...

  5. 大数据学习——mapreduce倒排索引

    数据 a.txt hello jerry hello tom b.txt allen tom allen jerry allen hello c.txt hello jerry hello tom 1 ...

  6. 大数据学习——mapreduce汇总手机号上行流量下行流量总流量

    时间戳 手机号 MAC地址 ip 域名 上行流量包个数 下行 上行流量 下行流量 http状态码 1363157995052 13826544101 5C-0E-8B-C7-F1-E0:CMCC 12 ...

  7. 大数据学习——mapreduce程序单词统计

    项目结构 pom.xml文件 <?xml version="1.0" encoding="UTF-8"?> <project xmlns=&q ...

  8. 大数据学习——MapReduce学习——字符统计WordCount

    操作背景 jdk的版本为1.8以上 ubuntu12 hadoop2.5伪分布 安装 Hadoop-Eclipse-Plugin 要在 Eclipse 上编译和运行 MapReduce 程序,需要安装 ...

  9. 【机器学习实战】第15章 大数据与MapReduce

    第15章 大数据与MapReduce 大数据 概述 大数据: 收集到的数据已经远远超出了我们的处理能力. 大数据 场景 假如你为一家网络购物商店工作,很多用户访问该网站,其中有些人会购买商品,有些人则 ...

随机推荐

  1. linux查找命令(find)

    linux查找命令(find) 命令格式: find [目录] [选项] [选项的条件] 选项: -name:文件名称查找 -size:文件的大小来查找 -perm:文件的权限来查找 ①根据文件的名称 ...

  2. 解题报告:poj 3259 Wormholes(入门spfa判断负环)

    Description While exploring his many farms, Farmer John has discovered a number of amazing wormholes ...

  3. 记录Jmeter集成Jenkins运行Ant做接口监听

    最近在鼓捣Jmeter的接口测试,把他集成到了Jenkins上做自动化接口监听.把操作记录下来. 首先就是进行接口测试的编写.打开Jmeter.主要是把接口的测试逻辑和断言处理调通后就OK了,接口程序 ...

  4. 144 Binary Tree Preorder Traversal 二叉树的前序遍历

    给定一棵二叉树,返回其节点值的前序遍历.例如:给定二叉树[1,null,2,3],   1    \     2    /   3返回 [1,2,3].注意: 递归方法很简单,你可以使用迭代方法来解决 ...

  5. Ansj分词的使用

    jar包下载地址:http://download.csdn.net/download/jj12345jj198999/6020541 博客地址:http://blog.csdn.net/a822631 ...

  6. IIS6配置FastCGI遇到ERROR5的解决方法

    FastCGI Error The FastCGI Handler was unable to process the request. ------------------------------- ...

  7. 拦截@RequestBody的请求数据

    要拦截首先想到的是拦截器,@RequestBody只能以流的方式读取,流被读过一次后,就不在存在了,会导致会续无法处理,因此不能直接读流 为了解决这个问题,思路如下: 1.读取流前先把流保存一下 2. ...

  8. CF782B The Meeting Place Cannot Be Changed

    题意: The main road in Bytecity is a straight line from south to north. Conveniently, there are coordi ...

  9. 推荐一款功能强大的Tomcat 管理监控工具,可替代Tomcat Manager

    我们在本地启动Tomcat服务器后,用localhost:访问: 再点Manager App,即可进入Tomcat自带的Manager这个应用,此处可以单独部署/卸载每一个应用.可以看到在Manage ...

  10. js中的函数编程

    之前在网上看到了一篇教你如何用js写出装逼的代码. 经过学些以及扩展很有收获在这里记录一下. 原文章找不到了.所以就不在这附上链接了. 大家看下下面两段js代码. 上面两端代码效果是一模一样的,都是在 ...